UNIVERSIDAD DE HUÁNUCO

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICA PROFESIONAL DE INGENIERÍA CIVIL

TESIS

"PROPUESTA DE MEJORA DE LOS NIVELES DE SERVICIO
PARA REDUCIR LA CONGESTION VEHICULAR DE LOS
ACCESOS AL PUENTE SEÑOR DE BURGOS EN LA CIUDAD
DE HUÁNUCO, 2019"

PARA OPTAR EL TÍTULO PROFESIONAL DE INGENIERA CIVIL

TESISTA

Bach. Katterin Jhojanna, MAMANI GONZALES

ASESOR

Ing. Josue, CHOQUEVILCA CHINGUEL

HUÁNUCO – PERÚ 2019

UNIVERSIDAD DE HUANUCO

Facultad de Ingeniería

ESCUELA ACADÉMICA PROFESIONAL DE INGENIERÍA CIVIL

ACTA DE SUSTENTACIÓN DE TESIS PARA OPTAR EL TITULO PROFESIONAL DE INGENIERO (A) CIVIL

En la ciudad de l'iuánuco, siendo las 12/5, horas cel dia 12, del mes de 2/c 6/6, del pño 20/9, en el Auditorio de la Facultad de Ingenieria, en cumplimiento de la senalado en el Reglamento de Grados y Títulos de la Universidad de Huánuco, se reunieron si Jurado Celificador integrado por los docentes:

Mg. Johnny Prudencia JACHA ROJAS (Presidente)

Mg. Reyder Alexander LAMBRUSCHWI ESPINOZA (Secretario)

Mg. Carlos Antonio TORRES PONCE (VOCED)

el Título Profesional de Ingeniero (a) Civil.

Nombrados medianto la Resolución Nº ... 1943 - 2019 - J. -FI -UDH para evaluar la Tesis intitulada:

"PROPUESTA DE MEJORA DE LOS NIVELES DE SERVICIO
PARA REQUER LA CONGESTIÓN VEHICULAR DE LOS ACCESOS
AL PUENTE SEÑOR DE BURGOS EN LA CIUDAD DE HUÁNLICO,
2019
presentado por el (la) Bach lle Katterin Ihojanno Mamani Gonzales para opter

Dicho acto de sustentación se desarrolló en dos etspas: exposición y absolución de preguntas: procediéndose luego a la evaluación por parte de los miembros del Jurado.

Secretario

Monald

DEDICATORIA

El presente trabajo de investigación va dedicado en especial a Dios, quien guía cada paso de mi vida por el buen camino y me ayuda a salir adelante.

Con amor a mis padres Luis Victor Mamani Araujo y Eldith Gonzales Ramirez, que confiaron en mí y por su profundo apoyo, el cual hicieron realidad la culminación de esta etapa profesional, a ustedes infinitamente gracias. Finalmente, a mis familiares y amistades.

AGRADECIMIENTO

Agradecer a todos los docentes catedráticos de la Escuela Académica Profesional de Ingeniería Civil de la Universidad de Huánuco, por haberme brindado sus amplios conocimientos pertinentes a mi formación académica.

A los ingenieros Pedro Luis Miñano Chamorro y Josué Choquevilca Chinguel por su sentido crítico y acertadas guías para la culminación de la tesis de investigación.

A mi hermano Luis Yampier Mamani Gonzales por su gran inmensa ayuda, el cual hizo posible la culminación de esta investigación.

Y a mi compañera de vida Molly, por su amor incondicional.

ÍNDICE GENERA

D	EDIC	ATOR	IA	ii
Α	GRAD	ECIM	IENTO	iii
ĺ٨	IDICE	DE F	IGURAS	vii
ĺ٨	IDICE	DE T	ABLAS	ix
R	ESUN	1EN		X
Α	BSTR	ACT		xi
I٨	ITRO	DUCC	IÓN	xii
C	APÍTU	JLO I.		14
1	PF	ROBLE	EMA DE INVESTIGACIÓN	14
	1.1	Desc	ripción del problema	14
	1.2	Form	ulación del problema	15
	1.3	Objet	iivos General	15
	1.4	Objet	ivos Específicos	15
	1.5	Justif	icación de la Investigación	15
	1.6	Limita	aciones de la Investigación	16
	1.7	Viabil	lidad de la Investigación	16
C	APÍTU	JLO II		17
2	M	ARCO	TEÓRICO	17
	2.1	Antec	cedentes de la investigación	17
	2.	1.1	Antecedentes Internacionales	17
	2.	1.2	Antecedentes Nacionales	19
	2.	1.3	Antecedentes Locales	20
	2.2	Base	s teóricas	22
	2	2.1	Ingeniería de Transporte –Tránsito	22
	2	2.2	Clasificación del Sistema Vial	23
	2	2.3	Intersecciones a Nivel	25
	2	2.4	Intersecciones a Desnivel	27
	2	2.5	Islas	28
	2	2.6	Métodos de aforo	28
	2	2.7	Dispositivos de control de tráfico	28
	2	2.8	Modelación del tráfico	30
	2.:	2.9	Microsimulación del tráfico	32

	2.	2.10	Determinación del Nivel de Servicio (LOS)	38
2	.3	Defini	iciones Conceptuales	38
	2.	3.1	Congestión Vehicular	38
	2.	3.2	Flujo Vehicular	38
	2.	3.3	Ciclo del Semáforo	39
	2.	3.4	Automóvil	39
	2.	3.5	Deprimido vial	39
	2.	3.6	Vissim 9.0	39
	2.	3.7	Modelación	40
	2.	3.8	Simulación	40
2	.4	Hipót	esis	40
2	.5	Varial	bles	40
	2.	5.1	Variable dependiente(Y)	40
	2.	5.2	Variable independiente (X)	40
2	.6	Opera	acionalización de variables	41
CAF	PĺΤΙ	ULO III		42
3	M	ETOD	OLOGÍA DE LA INVESTIGACIÓN	42
	3.	1.1	Enfoque de Investigación	42
	3.	1.2	Alcance de Investigación	42
	3.	1.3	Diseño de la Investigación	42
3	.2	Pobla	ación y Muestra	43
	3.	2.1	Población de Estudio	43
	3.	2.2	Tamaño de Muestra	43
3	.3	Técni	cas e instrumentos para la recolección de datos	46
	3.	3.1	Para la recolección de datos de campo	47
	3.	3.2	Para la presentación de datos	53
	3.	3.3	Para el análisis e interpretación de los datos	53
CAF	PÍΤΙ	ULO IV	⁷	54
4	R	ESULT	TADOS	54
4	.1	Proce	esamiento de datos	54
	4.	1.1	Procesamiento de los datos de campo	54
	4.	1.2	Construcción del modelo, calibración y validación del	
	pr	ovecto)	56

4.	.1.3 Evaluación de la microsimulación	. 72
4.2	Contrastación de hipótesis y prueba de hipótesis	. 73
CAPÍT	ULO V	. 74
5.1	Contrastación de los resultados del trabajo de investigación	. 74
CONC	LUSIONES	. 78
RECO	MENDACIONES	. 80
REFE	RENCIAS BIBLIOGRÁFICAS	. 81
ANEX	OS	. 83

ÍNDICE DE FIGURAS

Figura 1. Mapa Vial Huánuco	23
Figura 2. Vía Nacional PE-18A - Vía Arterial	24
Figura 3. Daniel Alomia Robles y el tramo recto del Puente Señor de	
Burgos – Vía Colectora	25
Figura 4. Jr. Crespo Castillo - Vía Local	25
Figura 5. Variedad de tipos de intersección a nivel	26
Figura 6. Ubicación de las intersecciones en estudio	27
Figura 7. Variedad de tipos de intersección a Desnivel	27
Figura 8. Ecuación de la curva de crecimiento poblacional	45
Figura 9.Codificacion de movimientos vehiculares en la Intersección	1.
	48
Figura 10. Codificacion de movimientos vehiculares en la Interseccio	n
2	48
Figura 11. Codificacion de movimientos peatonales en la Interseccion	ı 1.
	49
Figura 12. Codificacion de movimientos peatonales en la Interseccion	ı 2 .
	49
Figura 13. Estación de aforo vehicular de la intersección	50
Figura 14. Estacion de aforo peatonal de la intersección	50
Figura 15. Intersección 1, con dos fases del ciclo semafórico	51
Figura 16. Intersección 2, con tres fases del ciclo semafórico	51
Figura 17. Accesos asignados para la medición de colas en la	
Intersecciones	52
Figura 18. Tiempo de las fases de los semaforos de la interseccion 1 .	55
Figura 19. Tiempo de las fases de los semáforos de la intersección 2.	55
Figura 20. Imagen de fondo del proyecto	57
Figura 21. Creación de tramos y conectores	57
Figura 22. Composicion vehicular del modelo	59
Figura 23. Volumen vehicular de la hora pico en cada acceso del	
proyecto	60
Figura 24. Asignación de rutas estaticas vehiculares	61

Figura 25. Programación semaforica de las intersecciones en estu	dio 62
Figura 26. Circulacion de vehiculos y peatones de la situacion actu	ıal
del proyecto	63
Figura 27. Jr. Crespo Castillo	70
Figura 28. Malecon (E-O)	70
Figura 29. Malecón (O-E)	70
Figura 30. Puente Burgos (N-S)	71
Figura 31 Carretera Central (E-O)	71
Figura 32. Carretera Central (O-E)	71
Figura 33. Niveles de servicio en los accesos a Puente Señor de	
Burgos, de la situación actual proyectado 10 años	72
Figura 34. Niveles de servicio en los accesos a Puente Señor de	
Burgos, de la situación actual con mejoras incorporadas proyecta	do a
10 años	73
Figura 35. Longitudes de colas de la Interseccion 1	74
Figura 36. Longitudes de colas de la Interseccion 2	75
Figura 37. Tiempo de demora de la Interseccion 1	76
Figura 38. Tiempo de demora de la Interseccion 2	76

ÍNDICE DE TABLAS

Tabla 1. Clasificación de tipos de modelos
Tabla 2. Parámetros del modelo Wiedemann 74
Tabla 3. Niveles de Servicio
Tabla 4. Operacionalización de variables
Tabla 5. Parque automotor en circulación de la ciudad de Huánuco, 2012-
201744
Tabla 6. Estimación del crecimiento poblacional del parque automotor en
circulación para 10 años
Tabla 7. Registro de Longitud de cola e los accesos asignados en las
intersecciones de estudio
Tabla 8. Registro por tipo de vehiculo en cada acceso – Interseccion 1 58
Tabla 9. Registro por tipo de vehiculo en cada acceso - Intersección 2 59
Tabla 10. Iteración de Parámetros Wiedemann para la Calibración del
modelo microscópico
Tabla 11. Resultados de análisis de La Hipotesis Nula- Iteración 15 67
Tabla 12. Resultados de análisis de La Hipotesis Nula – Iteración 16 68
Tabla 13. Longitudes de cola de la intersección 1 (situación actual con y sin
propuesta de mejora)74
Tabla 14. Longitudes de cola de la interseccion 2 (situacion actual con y sin
propuesta de mejora)
Tabla 15. Tiempo de demora de la interseccion 1 (situacion actual con y sin
propuesta de mejora)
Tabla 16. Tiempo de demora de la interseccion 2 (situacion actual con y sin
propuesta de mejora)
Tabla 17. Niveles de servicio de la interseccion 1 (situacion actual con y sin
propuesta de mejora)77
Tabla 18. Niveles de servicio de la interseccion 2 (situacion actual con y sin
propuesta de mejora)77

RESUMEN

Los altos niveles de congestión vehicular que día a día enfrentan los conductores y peatones de la ciudad de Huánuco, se ve reflejado particularmente en los accesos al Puente Señor de Burgos, ubicado en los distritos de Huánuco y Amarilis.

El presente trabajo de investigación contempla un diagnóstico de la problemática actual referido al inadecuado diseño geométrico, carencia y deterioro de señalizaciones. Es por ello que tiene como objetivo principal proponer un diseño geométrico que incorpore una adecuada señalización; para mejorar los niveles de servicio y reducir la congestión vehicular que se presenta en dicha intersección.

El desarrollo del modelo de microsimulación comprende de cuatro etapas, primero se pasó a la toma de datos de campo para la construcción del modelo (levantamiento topográfico, programación semafórica, señalizaciones, aforo vehicular, peatonal y velocidades) y para la calibración (longitud de cola). La segunda etapa es el procesamiento de los datos de campo para la construcción del modelo en el programa Vissim 9.0, continuamente se procede a programar la red vial de la situación actual. La tercera etapa consiste en la calibración del modelo (ajuste de los parámetros de Wiedemann 74) y validación. Finalmente se evaluará y analizará los resultados de los niveles de servicio en los accesos al Puente Señor de Burgos de la situación actual y de la propuesta de mejora proyectado en 10 años.

El nivel de congestión vehicular del escenario actual para las dos intersecciones dio como resultado un nivel pésimo de viabilidad, es decir "E" y "F". Asimismo, para el escenario con propuesta de solución fue un nivel bueno "D" y "D", el mismo que se considera aceptable. Concluyéndose que con la solución planteada de rediseñar las islas y de construir un deprimido vial en el tramo transversal de la Carretera Central va a mejorar considerablemente los niveles de servicio.

Palabras Claves: congestión vehicular, niveles de servicio, microsimulación, intersección, calibración, programa Vissim 9.0 viabilidad, islas, deprimido vial.

ABSTRACT

The high levels of vehicular congestion that drivers and pedestrians of the city of Huánuco face every day, is particularly reflected in the accesses to the Lord of Burgos Bridge, located in the districts of Huánuco and Amarilis.

This research paper contemplates a diagnosis of the current problem referred to the inadequate geometric design, lack and deterioration of signs. That is why its main objective is to propose a geometric design that incorporates adequate signaling; to improve service levels and reduce vehicular congestion that occurs at that intersection.

The development of the microsimulation model comprises four stages, first it was passed to the field data collection for the construction of the model (topographic survey, traffic light programming, signaling, vehicle capacity, pedestrian and speeds) and for calibration (tail length). The second stage is the processing of the field data for the construction of the model in the Vissim 9.0 program, the road network of the current situation is continually programmed. The third stage consists in the calibration of the model (adjustment of the Wiedemann 74 parameters) and validation. Finally, the results of the service levels in the accesses to the Lord of Burgos Bridge of the current situation and of the proposed improvement in 10 years will be evaluated and analyzed.

The level of vehicular congestion in the current scenario for the two intersections resulted in a lousy level of viability, ie "E" and "F". Also, for the scenario with a proposed solution, it was a good level "D" and "D", which is considered acceptable. Concluding that with the proposed solution of redesigning the islands and building a depressed road on the cross section of the Central Highway will improve service levels considerably.

Keywords: vehicular congestion, service levels, microsimulation, intersection, calibration, Vissim 9.0 feasibility program, islands, road depressed.

INTRODUCCIÓN

En la actualidad el tema de congestión vehicular se ha vuelto uno de los principales problemas urbanos e interurbanos, ya que se observa dificultades de circulación al momento de trasportarse de un lugar a otro, es así que la calidad de vida de muchas personas se ve deteriorada.

Este problema no es ajeno a la ciudad de Huánuco ya que el parque automotor está creciendo a un ritmo alarmante. Arelia Luna (2018) afirma: "Entre los vehículos particulares y públicos en Huánuco se han registrado cerca de 80 vehículos en diversas categorías, de las cuales el 71.15% son menores y el 28.85% son vehículos livianos y pesados" (párr. 3).Un caso particular es justamente los accesos del Puente Señor de Burgos ya que está catalogado como una de las zonas más críticas de la ciudad, por ello el trabajo de investigación se enfocará en proponer un diseño geométrico, que incorpore una adecuada señalización, para mejorar los niveles de servicio y reducir la congestión vehicular.

La presente tesis será evaluada a través del programa Vissim 9.0, debido a los buenos resultados que se han empleado en otras ciudades del mundo. El programa para la investigación se empleará para modelar el comportamiento de la situación actual y simular dos escenarios proyectados en 10 años con y sin propuesta de mejora en los accesos del Puente Señor de Burgos.

Para el desarrollo del trabajo de investigación se ha organizado en 4 capítulos de la siguiente manera:

En el primer capítulo, se define el problema de investigación, de tal manera que podamos tener claro lo que queremos investigar.

En el segundo capítulo se desarrolló el marco teórico, donde describe todas las teorías respecto a las variables a emplearse en el desarrollo de la investigación.

En el tercer capítulo continuo con la descripción de la metodología de la investigación, el cual implica los métodos a utilizar para recopilar datos.

En el cuarto capítulo se presentan los resultados de la investigación que se obtuvieron con el programa Vissim 9.0 a través de tablas y gráficos estadísticos.

Finalmente, en el quinto capítulo se discuten los resultados de los dos escenarios proyectados en 10 años de la situación actual con y sin propuesta de mejora.

CAPÍTULO I

1 PROBLEMA DE INVESTIGACIÓN

1.1 Descripción del problema

Diversos países en desarrollo como Perú se encuentran en constante crecimiento demográfico, en consecuencia, la demanda del flujo vehicular ha aumentado, la cual no ha sido proporcional al desarrollo vial urbano. Todo ello nace del crecimiento socio-económico y la facilidad de adquisición de vehículos.

El principal problema de transporte en la ciudad de Huánuco, es la congestión vehicular, debido a los elevados niveles de servicio que se presentan en casi toda la ciudad. La mayor parte de esta masa de vehículos pertenece al transporte de vehículos menores, que lamentablemente no cumplen con los estándares mínimos para circular en las carreteras, lo que genera en consecuencia desorden vehicular.

Para atacar el problema de congestión vehicular en ciudades se deben conocer sus causas, importancia y entender por qué el fenómeno tiende a empeorar en el tiempo. En esta contribución, además de lo anterior se estigmatiza la solución tradicional (de sentido común), consistente en construir infraestructura, y se mencionan paradojas que ayudan a entender por qué esta propuesta ha fallado de forma tan espectacular en todo el mundo. Se concluye con una somera explicación de las componentes esenciales de una estrategia eficaz de solución al problema. (ORTÚZAR, 2002, p. 7)

Un caso particular frente a esta situación se ha generado en los accesos del Puente Señor de Burgos, ubicada en los distritos de Huánuco y amarilis, que constantemente presentan conflictos entre usuarios, cuello de botella y colas de vehículos, en horas de máxima demanda. Añadidos a ellos también los estudios viales y diseño geométrico inadecuados, carencia y deterioro de señalizaciones horizontales y verticales, así como la inadecuada semaforización. Es por ello, que a través de la presente investigación para escenarios proyectados en 10 años se evaluara la situación actual del

funcionamiento de las intersecciones en estudio y se propone una mejora de los niveles de servicio para reducir la congestión vehicular.

1.2 Formulación del problema

¿De qué manera se podría mejorar los niveles de servicio para reducir la congestión vehicular de los accesos al Puente Señor de Burgos en la ciudad de Huánuco?

1.3 Objetivos General

Proponer un diseño geométrico de los accesos al Puente Señor de Burgos en la ciudad de Huánuco, que incorpore una adecuada señalización, para mejorar los niveles de servicio y reducir la congestión vehicular.

1.4 Objetivos Específicos

- Modelar, calibrar y validar el tráfico de la situación actual, utilizando el programa Vissim 9.0.
- Simular dos escenarios proyectados en 10 años de la situación actual con y sin propuesta de mejora, utilizando el programa Vissim 9.0.
- Determinar los niveles de servicio de los accesos al Puente Señor de Burgos para dos escenarios proyectados en 10 años, con y sin propuesta de mejora.

1.5 Justificación de la Investigación

Ante la problemática descrita anteriormente, existe una razón de querer contribuir de alguna manera desde un punto de vista técnico una propuesta de mejora de los niveles de servicio para reducir la congestión vehicular de los accesos al Puente Señor de Burgos. Por lo que se considera sumamente importante, ya que servirá de alguna forma a futuras investigaciones.

Los accesos al Puente Señor de Burgos, materia del presente estudio, forma parte de la Vía Nacional PE-18A: Huánuco – Tingo María, el cual pertenece a una carretera de primer orden y de alto tránsito. Asimismo, debido a que une los distritos de Huánuco y Amarilis, se encuentra ubicadas áreas de influencia directa (A.H canteras de LLicua, A.H. San Luis Sector 6, A.H. Los Jazmines, Malecón Leoncio Prado, Jr. Crespo Castillo, entre otros) e

indirecta (Paucarbamba, Fonavi III, Pillco Marca, Esperanza, entre otros), que hacen que sea una zona muy transitada.

El presente trabajo de investigación beneficiará a la población Huanuqueña con 293 mil 397 habitantes, de acuerdo al último censo realizado en el año 2017; mejorando así la calidad de vida de los peatones y transportistas.

1.6 Limitaciones de la Investigación

- La toma de datos de los aforos vehiculares y peatonales se llevaron a cabo en días típicos, es decir en días laborables donde no exista feriados.
- Muy poca demanda profesional en el uso y manejo del programa Vissim 9.0.
- La presente investigación no pretende generalizar los resultados obtenidos, sino que intenta brindar algunos criterios iniciales que deberían ser verificados y complementados con futuras investigaciones.

1.7 Viabilidad de la Investigación

- El presente trabajo de investigación es viable porque cuenta con la información necesaria, recursos humanos y financieros.
- El uso del programa Vissim 9.0 para el procesamiento de datos y análisis de la congestión vehicular hace posible el desarrollo de la investigación.
- Es viable debido al factor tiempo porque no requiere de muchos años para llevar a cabo el desarrollo de la investigación.
- Existe la disponibilidad de terreno para la propuesta planteada.

CAPÍTULO II

2 MARCO TEÓRICO

2.1 Antecedentes de la investigación

En la actualidad, se presentan muchos problemas de congestión vehicular en la ciudad de Huánuco, la cual es originada por varios factores. Es por ello que se mencionarán investigaciones realizadas sobre la problemática indicada y las propuestas de soluciones que desarrollaron para reducir el congestionamiento vehicular.

2.1.1 Antecedentes Internacionales

Asaithambi, Kuttan, & Chandra (2016) quienes publicaron el artículo que lleva por título "Pedestrian Road Crossing Behavior Under Mixed Traffic Conditions: A Comparative Study of an Intersection Before and After Implementing Control Measures", dicha investigación estudio una intersección que no presenta señalización ni medidas de control policiaca, en Kankanady- Mangalore (India). Estudio los diferentes comportamientos del peatón ante el cruce peatonal en condiciones de tráfico mixto antes y después de la implementación de medidas de control, que en este caso fue la de instalar un semáforo de tiempo fijo y cruce peatonal (línea de cebra). En cuanto a la recopilación de datos se utilizó el método de video gráfico en la hora punta, extrayéndose por cada minuto las características de los peatones y tráfico vehicular.

Resultado: La investigación demostró que antes de la implementación de la señal, se observaron 2 patrones de cruce (las de un paso y de dos pasos) y dentro de ello se subdividieron en cruces (perpendiculares, oblicuos y mixtos). Después de la implementación de las señalizaciones, más del 50% de los peatones opta el cruce de un solo paso, por lo tanto, la velocidad de cruce promedio de los peatones disminuyo en un 23% (de 1.37 a 1.05 m/s), esto se debe a las señalizaciones, ya que generan mayor seguridad y puedan cruzar de una manera más relajada.

Cifuentes Aguirre & Paz Marín (2017) quienes realizaron la tesis de grado que lleva por título "Relación del diseño geométrico con los conflictos vehiculares en intersecciones a desnivel casos de estudio avenida Boyacá con – Calle 80 y calle 116", la investigación busca indagar sobre la relación del diseño geométrico en los conflictos vehiculares de las intersecciones de la Avenida Boyacá con Calle 80 y Calle 116, mediante la contemplación de los parámetros descritos en las normas INVIAS, IDU y AASHTO, para establecer tramos críticos y proponer soluciones fundamentadas en Vissim 9.0, que contribuyan a mejorar el flujo vehicular.

Resultado: La investigación demostró que, mediante la adición de carriles en las convergencias y divergencias de los puntos críticos en los casos de estudio, que actúen como carriles de aceleración u desaceleración, se elimina el conflicto entre los vehículos que convergen o divergen del ramal y los que se movilizan por la calzada principal; reflejado durante la simulación, en el mejoramiento de la movilidad al conseguir disminuir la cantidad de vehículos que no transitaron durante el proceso, que para el Caso de la Calle 80 con Avenida Boyacá fue de 547 vehículos de los 658 que no fueron simulados, mientras que en la Calle 116 la reducción fue de 82 vehículos de 195 sin simular; demostrando que la capacidad de las intersecciones no es suficiente para la demanda proyectada al año 2042 y que es necesario realizar mejoras u modificaciones, para evitar grandes congestionamientos que lleven a un aumento significativo en los conflictos viales.

Núñez Delgado, Aldana Valencia, & Aldana Valencia (2015) quienes realizaron la tesis de grado que lleva por título "Levantamiento topográfico y diseño geométrico vial con paso a desnivel en la Intersección de la Avenida Boyacá con calle 44 Sur", este trabajo pretende generar el diseño horizontal de un paso a desnivel en la intersección de la Avenida Boyacá con Calle 44 Sur, como una solución a la congestión vehicular que se presenta a diario en la zona, a causa de la gran cantidad de semáforos existentes.

Resultado: La investigación demostró que los pasos a desnivel son una buena solución para facilitar el flujo de vehículos en los cruces entre vías importantes como lo es la Avenida Boyacá

2.1.2 Antecedentes Nacionales

Garcia Rojas & Jauregui Huaman (2018) quienes realizaron la tesis de grado que lleva por título "Evaluación de soluciones para mejorar el nivel de servicio de tres intersecciones de la avenida Salaverry, comprendidos entre la avenida Cádiz y la avenida Canevaro", el estudio se basó en la medición del comportamiento de los niveles de servicio de tres intersecciones de la Av. Salaverry y plantear una propuesta de solución.

Para la simulación de transito utilizaron el programa SYNCHRO 8.0, por ello se realizaron estudios de campo para la obtención de datos de aforo vehicular, ciclo semafórico y factores de ajuste para el flujo de saturación. Con los datos ya mencionados se pudo calcular los tiempos de demora, asimismo los niveles de servicio. Finalmente, para verificar los resultados obtenidos en el programa SYNCHRO, se realizó una comparación con los cálculos manuales obtenidos del manual HCM.

Resultado: La investigación identifico las deficiencias de las tres intersecciones, con un nivel de servicio F (Pésimo), por ello ante el problema expuesto se pasó a retirar e instalar nuevos semáforos, calculando un nuevo ciclo semafórico y una mejor señalización, demostrando una mejora en el nivel de servicio.

Salazar Solano (2018) quien desarrollo la tesis de grado titulada "Análisis por Micro Simulación de la Intersección entre la Av. Brasil y el Jr. General Borgoño empleando Vissim 8", el desarrollo de la investigación se basa en una intersección ubicada en el distrito de Jesús María.

El proyecto de ingeniería se desarrollo mediante el programa de microsimulación Vissim y Viswalk 8.0, con la finalidad de representar

la realidad objetiva de la intersección en estudio y asi obtener indicadores de mejora como el tiempo de viaje vehicular y peatonal, longitud de cola, etc. Luego de analizar la realidad del estado actual de la intersección se plantearon dos propuestas de mejora, la primera es de un rediseño geometrico y la segunta de un nuevo ciclo semafórico.

Resultado: La investigación demostró que al aplicar ambas propuestas (Rediseño geométrico y nuevo ciclo geométrico), se logro un incremento de la velocidad vehicular promedio del 30% y una mejora en el tiempo de demora promedio reduciendose de 29.4 a 17.8 segundos. Además, se redujo la longitud de cola mayor en la Av. Republica Dominicana de 28 a 15 metros.

Lopez Barrios & Medina Marcos (2018) quienes realizaron la tesis de grado que lleva por título "Propuesta de mejora en los niveles de servicio del Óvalo José Quiñones empleando el software Vissim 7.0", identifica que en determinadas horas el flujo vehicular se torna pesado debido a las largas colas de espera a la intersección próxima. Por ello la investigación se basó en el análisis de la situación actual y de las alternativas de mejora de los flujos vehiculares, colas y tiempo de espera, con el software de microsimulación Vissim 7.0.

Resultado: En la investigación se tuvieron dos propuestas de mejora las cuales en conjunto obtienen buenos resultados. En la primera propuesta se reduce el número de carriles con la finalidad de evitar el traslape de rutas y posibles accidentes, logrando ordenar los flujos de ingreso de los vehículos a esta vía. Por otro lado, una segunda propuesta la cual busca canalizar el flujo que se dirige hacia el Giro en U a través de la implementación de un carril de derivación único para el Giro.

2.1.3 Antecedentes Locales

Soto Huaman (2016) quien realizo la tesis de grado titulada "Intervención vial del puente Esteban Pabletich y sus accesos, para mejorar la transitabilidad en la ciudad de Huánuco – 2016", identifica

que el tramo de la vía del puente Esteban Pabletich y sus accesos ha colapsado, por ello se realizó el análisis de flujos vehiculares y peatonales. Después del análisis se planteó una solución el cual consiste en un nuevo diseño geométrico de una rotonda a nivel en la intersección 1 (entrada de Huánuco a Amarilis), una rotonda a desnivel superior en la intersección 2 (ovalo Pabletich) y un tramo de 04 carriles de ingreso y salida del Puente Esteban Pabletich.

Resultado: La investigación concluyo, que la solución planteada de un nuevo diseño geométrico, mejoró la continuidad vehicular, que fue la de incorporar una rotonda a nivel y a desnivel en los accesos del Puente Esteban Pabletich; obteniendo buenos resultados en los niveles de servicio de pésimo a bueno. La intersección 1 (entrada de Huánuco a Amarilis), paso de un nivel de servicio de "F" a "D" y la intersección 2 (ovalo Pabletich), con un nivel de "F" a "C".

Rojas Arana (2016) quien realizo la tesis de grado titulada "Propuesta de Diseño Geometrico en el Ovalo Esteban Pavletich – Huanuco". La investigación surge debido a que el Puente Esteban Pavletich y demas vias que conectan al Ovalo presenta una gran demanda vehicular generando congestion vehicular, ya que fueron diseñados para una capacidad menor. Después del análisis se planteo una solución al diseño geometrico para una adecuada funcionabilidad al Ovalo Esteban Pavletich.

Se llevo a cabo mediante la toma de muestras de los flujos vehiculares y sus posibles giros, elaboración del plano actual, análisis de los niveles de servicio y puntos de conflicto. Finalmente, elaboración del plano con propuesta de mejora, evaluando el diseño mas óptimo y eficiente.

Resultado: Esta tesis concluyo que mediante un nuevo diseño geometrico va a mejorar considerablente el nivel de servicio de (F a C) y una reducción de conflictos de 38 (un solo punto) a 29 (dividios en 3 puntos).

Salcedo Cruz (2019) quien realizo la tesis de grado denominado "Propuesta para Mitigar la Congestion Vehicular y Mejorar el Nivel de Servicio en las Intersecciones del Centro de la Ciudad de Huánuco". Esta investigacion tiene como objetivo plantear una propuesta basado en la optimizacion y sincronizacion de los ciclos semaforicos del transito vehicular utilizando el programa Synchro Traffic 8. Se llevo a cabo en la simulacion del transito vehicular y el calculo del nivel de servicio con propuesta en estado actual y con proyeccion del volumen vehicular al año 2029.

Resultado: El vehiculo predominante en el area de estudio es el trimovil, con una incidencia del 37%; por otro lado el volumen horario de maxima demanda se da a las 5:45 pm a 6:45 pm. De los niveles de servicio se concluye que con la propuesta incorporada se mejoran los niveles de servicio actuales "D" y "E" a "B" y "C" y para la situacion actual proyectada al 2029 solo 4 intersecciones presentan niveles de servicio "D", los demas se mantienen en "B" y "C".

2.2 Bases teóricas

2.2.1 Ingeniería de Transporte - Tránsito

Cal y Mayor Reyes Spindola & Cárdenas Grisales (2007) define a la Ingeniería de transporte y la ingeniería de Tránsito de la siguiente manera:

Ingeniería de Transporte: aplicación de los principios tecnológicos y científicos a la planeación, al proyecto funcional, a la operación y a la administración de las diversas partes de cualquier modo de transporte, con el fin de proveer la movilización de personas y mercancías de una manera segura, rápida, confortable, conveniente, económica y compatible con el medio ambiente.

Ingeniería de Tránsito: aquella fase de la ingeniería de transporte que tiene que ver con la planeación, el proyecto geométrico y la operación del tránsito por calles y carreteras, sus redes, terminales, tierras adyacentes y su relación con otros modos de transporte. (p. 31)

Por lo tanto, de acuerdo a lo citado la Ingeniería de tránsito es una rama de la Ingeniería de transporte, y a su vez se encarga en desarrollar el diseño geométrico de todos los elementos de una calle o carretera.

2.2.2 Clasificación del Sistema Vial

2.2.2.1. Sistema Vial Nacional

La ruta del sistema nacional que atraviesa la ciudad de Huánuco por la carretera interurbana (carretera central), es la Vía Nacional PE-18A: Huánuco - Tingo María.

Figura 1. Mapa Vial Huánuco

Fuente: Ministerio de Transporte y Comunicaciones

2.2.2.2. Sistema Vial Urbano

En el ámbito urbano el sistema de clasificación es aplicable a todo tipo de vías públicas terrestres como: calles, jirones, avenidas, malecones, entre otros. Según el Manual de Diseño Geométrico de Vías Urbanas -2005, la clasificación de la red vial urbana, contempla las siguientes categorías principales:

- Vía Expresa
- Vía Arterial
- Vía Colectora
- Vía Local

La clasificación de estas vías se basa de acuerdo a los parámetros de diseño, que son los siguientes:

- Velocidad de diseño
- Características del flujo
- Control de accesos y relación con otras vías
- Número de carriles
- Servicio a propiedades adyacentes
- Servicio de transporte público
- Estacionamiento, carga y descarga de mercaderías

Teniendo en cuenta los parámetros de diseño de la clasificación de Vías Urbanas, para el presente estudio las vías se adaptan a la siguiente clasificación:

Vía Arterial: La Vía Nacional PE-18A (Huánuco-Tingo María) es una carretera interurbana y se adapta a una vía arterial porque conecta al tramo recto del Puente Señor de Burgos y al Malecón Gustavo Walker Soberon, que son vías colectoras.

Figura 2. Vía Nacional PE-18A - Vía Arterial

Fuente: Elaboración Propia

Vía Colectora: El Malecón Daniel Alomia Robles y el tramo recto del Puente Señor de Burgos se adaptan a una vía colectora porque conecta a las calles locales y en principal al Jirón Crespo Castillo y a las arteriales (Vía Nacional PE-18A / Huánuco-Tingo María).

Figura 3. Daniel Alomia Robles y el tramo recto del Puente Señor de Burgos – Vía Colectora

Fuente: Elaboración Propia

Vía Local: El Jirón Crespo Castillo es una vía local porque se conecta con las calles de la ciudad de Huánuco y con las vías colectoras (Malecón Daniel Alomia Robles y el tramo recto del Puente Señor de Burgos).

Figura 4. Jr. Crespo Castillo - Vía Local

Fuente: Elaboración Propia

2.2.3 Intersecciones a Nivel

"Las intersecciones a nivel no distribuyen al flujo vehicular a diferentes niveles y, por tanto, se presentan conflictos entre los flujos vehiculares que se cruzan" (Nicholas J. & Lester A., 2005, p. 219).

2.2.3.1. Tipos de Intersección a Nivel

Los tipos de intersecciones a nivel están en función al número de vías o ramales, los cuales pueden estar configurada de diferentes formas. Entre ellas se tiene las de tres ramales, cuatro ramales y más de cuatro, que son las especiales. A continuación, en la siguiente Figura 5 se muestra los tipos de intersección a nivel:

ESPECIALES

DE CUATRO RAMALES

DE TRES RAMALES

INTERSECCION EN X

SIMPLE

ENSANCHADA

CANALIZADAS

CANALIZADAS

CANALIZADAS

CANALIZADAS

CANALIZADAS

CANALIZADAS

CANALIZADAS

CANALIZADAS

Figura 5. Variedad de tipos de intersección a nivel

Fuente: Manual de Carreteras "Diseño Geométrico" DG (2013)

El Puente Señor de Burgos con el Malecón Daniel Alomia Robles y el Jr. Crespo Castillo (Intersección 1), según la figura N° 6 corresponde a una intersección en + de forma ensanchada. Así mismo el Puente Señor de Burgos con la Carretera Central (Intersección 2) corresponde a una intersección en T de forma canalizada.

Intersection 1

Puente Señor de Burgos

Interseccion 2

Printago

Figura 6. Ubicación de las intersecciones en estudio

Fuente: Imagen del Google Maps (2018)

2.2.4 Intersecciones a Desnivel

Es una solución de diseño geométrico, para posibilitar el cruzamiento de dos o más carreteras o con vías férreas en niveles diferentes, con la finalidad de que los vehículos puedan realizar todos los movimientos posibles de cambios de trayectoria de una carretera a otra, con el mínimo de puntos de conflicto posible. (Ministerio de Transportes y Comunicaciones, 2013, p. 279)

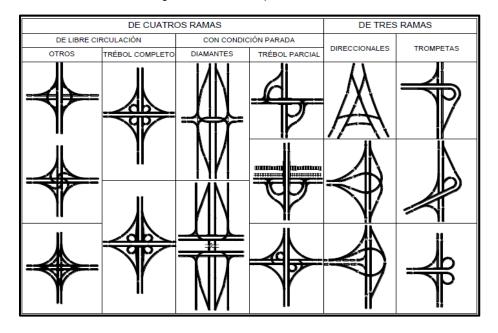


Figura 7. Variedad de tipos de intersección a Desnivel

Fuente: Manual de Carreteras "Diseño Geométrico" DG (2013)

2.2.5 Islas

Son zonas que dividen los carriles de circulación destinadas a la estancia de peatones con el objeto de fraccionar el tiempo de cruce y destinada a guiar el movimiento de los vehículos.

"Las islas pueden agruparse en tres clases principales, según su función: divisorias o separadora; canalización, encauzamiento o direccionales y de refugio" (Ministerio de Transportes y Comunicaciones, 2013, p. 271).

Islas divisorias o separadoras: La isla divisoria sirve para separar las calzadas, de diferentes o iguales sentidos de circulación.

Islas de canalización, encauzamiento o direccional: Es aquella isla que ayuda a dirigir los diferentes movimientos de tránsito que pueden realizar en una intersección.

Islas refugio: Es una zona que brinda refugio a los peatones, cuando las calzadas son demasiado anchos, facilita los cruces y evita accidentes.

2.2.6 Métodos de aforo

Los estudios de volúmenes de tráfico, se determinan mediante aforos vehiculares o peatonales, sobre puntos o secciones específicas de una vía.

El aforo se puede determinar de diversos métodos, entre ellas tenemos el aforo manual que se da a través de un conteo visual por parte de aforadores de tráfico, que son personales especialistas en el tema ya sea por formatos de conteo o a través de aparatos electrónicos. Otra manera es haciendo uso de la cámara de video, que mediante grabaciones se puede realizar el conteo en gabinete de una manera más detallada y calmada.

2.2.7 Dispositivos de control de tráfico

Los dispositivos de control de tráfico son aquellas señales, marcas y semáforos que se colocan sobre las vías, con el objetivo de reducir el número de accidentes, mejorar la seguridad vial y dar mayor comodidad al usuario. Se colocan dentro del cono visual del conductor y peatón, para llamar la atención y facilitar su lectura e interpretación. Entre los dispositivos de control de tráfico tenemos los siguientes:

a) Señales Verticales

Son aquellas señales que se colocan sobre postes verticales en la superficie del pavimento. Se usan para informar a los usuarios, a través de señales o palabras, para así prevenir con anticipación maniobras en la intersección (Gómez Johnson, 2004).

De acuerdo a la función las señales verticales se dividen en tres tipos: señales reguladoras o de reglamentación, prevención e información (Ministerio de Transporte y Comunicaciones, 2016).

Señales Reguladoras o de Reglamentación: Son aquellas señales que indican limitaciones físicas o prohibiciones reglamentarias que regulan el tránsito. Su cumplimiento es obligatorio e inexcusable. Generalmente poseen una forma circular inscrita en el interior de una placa cuadrada o rectangular. Sin embargo, las señales de PARE y CEDA el PASO, presentan una forma distinta; cuya forma es octogonal y triangular respectivamente.

Señales de Prevención, son aquellas que previenen a los usuarios sobre una situación de máximo peligro. Las señales preventivas son símbolos de forma romboidal, de color amarillo, con una línea perimetral negra y figura también negra. A excepción de las señales de ZONA DE NO ADELANTAR y ZONAS ESCOLARES, presentan una forma triangular y pentagonal respectivamente.

Señales de Información, este tipo de señales están destinadas a guiar y brindar información al conductor. Tienen forma rectangular o cuadrado, de color verde o azul. Generalmente en las carreteras son de fondo verde y azul en las zonas urbanas y vías urbanas.

b) Señales Horizontales

Las señales horizontales se clasifican en marcas planas en el pavimento (líneas horizontales y transversales, flechas, símbolos y letras) y marcas elevadas en el pavimento con el fin de delinear la geometría de las vías para regularizar y canalizar el tránsito de vehículos y peatones.

Las marcas planas en el pavimento identificadas en la zona de estudio son:

- Línea de borde de calzada o superficie de rodadura
- Línea de carril
- Línea central
- Líneas canalizadoras de tránsito
- Línea de pare
- Línea de cruce peatonal

c) Semáforos:

Los semáforos son dispositivos de señales que se ubican en intersecciones viales, que sirve para regular y facilitar el control de la congestión vehicular y peatonal. Según su función, los semáforos en una intersección pueden ser: para tránsito de vehículos, paso de peatones y cruces de trenes.

2.2.8 Modelación del tráfico

La modelación del tráfico es la representación virtual del flujo vehicular que se desarrolla para representar con exactitud lo que se desea estudiar.

En esta investigación para llevar a cabo la modelación estará conformado por la geometría de la zona de estudio (Accesos al Puente Señor de Burgos) y los elementos dinámicos (vehículos, peatones, entre otros), permitiendo conocer la situación actual y la propuesta de mejora del presente estudio.

En la tabla 1 se puede apreciar los diferentes tipos de modelos según su naturaleza, nivel de detalle y nivel de aleatoriedad.

Tabla 1. Clasificación de tipos de modelos

TIPOS DE MODELOS DE TRÁFICO					
SEGÚN SU	NIVEL DE DETALLE	NIVEL DE			
NATURALEZA		ALEATORIEDAD			
Modelos continuos	Modelos macroscópicos	Modelos determinísticos			
Modelos discretos	Modelos mesoscópicos	Modelos estocásticos			
	Modelos microscópicos				

Fuente: Elaboración Propia

A continuación, se definirán los principales modelos empleados para los estudios del presente proyecto:

2.2.8.1. Modelos continuos

Es aquel modelo que relacionan tasas de cambio de los parámetros a lo largo del tiempo de estudio. Como por ejemplo la velocidad de los vehículos, posición, longitudes de cola, entre otros.

2.2.8.2. Modelo microscópico

"Un programa de micro-simulación representa la operación vehicular dentro de un sistema vial a nivel individual, es decir se analiza vehículo por vehículo cada maniobra dentro de una red donde puede haber decenas de miles" (PTV GROUP, 2014, p. 5).

Por ello, se puede decir que el modelo microscópico permite evaluar aspectos operativos a mayor detalle como: cambio de carril, espacio entre vehículo-seguridad y vehículo que sigue.

2.2.8.3. Modelo estocástico

También conocidos como modelos probabilísticos, ya que presenta diferencias en las respuestas obtenidas a partir de los datos ingresados y al tiempo que dura el análisis de una situación.

El programa Vissim cumple con las características de un modelo estocástico ya que para evaluar este tipo de modelamiento se debe correr varias veces para obtener un valor medio de los indicadores.

2.2.9 Microsimulación del tráfico

Los modelos microscópicos son excelentes para el análisis del tráfico. Existen diferentes sistemas de microsimulación, para el estudio de investigación se desarrollará con el programa Vissim ya que es una herramienta microscópica donde tratan de describir a nivel detalle el entorno de simulación y el comportamiento de los vehículos.

Para el desarrollo de la microsimulación es importante tener en cuenta los siguientes conceptos fundamentales que a continuación se describirá.

2.2.9.1. Nivel de aleatoriedad

El nivel de aleatoriedad en los sistemas de microsimulación puede ser determinístico o estocástico. El modelo más adecuado al estudio es el estocástico porque simula el comportamiento de los conductores y vehículos de manera más exacta a la realidad en base a distribuciones estadísticas, en cambio el modelo determinístico no existe variabilidad en el comportamiento del conductor y características del vehículo.

2.2.9.2. Número de corridas

Por cada corrida en el programa de microsimulación se obtendrá valores generalmente cercanos a la media total de corridas. Por ello para hacer validos los valores obtenidos se deberán hacer correr la cantidad necesaria mínima de corridas (Fellendorf & Vortish, 2010).

Para determinar la cantidad mínima de corridas será hará un estudio estadístico. Esta consiste en coger una parte de la población (tamaño muestra), la cual debe tener valores heterogéneos lo más representativo, con la finalidad de obtener resultados y poder extrapolar de la muestra a la población (Fernández S, 2001).

Los parámetros estadísticos para llevar a cabo el estudio se utilizará la media, desviación estándar y un tipo de distribución.

Los resultados obtenidos se extrapolarán de la muestra a la población con nivel de confianza y un margen de error.

La desviación estándar de la muestra se calcula con la siguiente formula:

$$S^2 = \frac{\sum (x - \bar{x})^2}{N - 1}$$

Donde:

S = Desviación estándar

X = Resultado del parámetro de eficiencia en una corrida especifica

x = Media del parámetro de todas las corridas

N = Número de corridas

La Federal Highway Administration (FHWA) recomienda utilizar la distribución de T Student para calcular el intervalo de confianza y el número mínimo de corridas.

$$\operatorname{CI}_{(1-\alpha\%)} = 2 \times \operatorname{t}_{\left(\frac{\alpha}{2}\right),N-1} \times \frac{S}{\sqrt{N}}$$

Donde:

CI = Intervalo de confianza

 $\mathbf{t}_{\left(\frac{\infty}{2}\right)}$ = T Student con N-1 grados de libertad

N = Numero de corridas

S = Desviacion estándar

Según la FHWA (2004), el número mínimo de corridas se calcula con la siguiente formula:

$$N = (t_{\left(\frac{x}{2}\right)} \times \frac{S}{e})^2$$

Donde:

N = Número mínimo de corridas

 $\mathbf{t}_{\left(\frac{\infty}{2}\right)}$ = T Student con N-1 grados de libertad

S = Desviacion estándar

e = Margen de error

Para determinar el número mínimo de corridas la Federal Highway Administration (FHWA), recomienda seguir los siguientes pasos:

Primero: Evaluar el modelo de trabajo con mínimo de 4 corridas.

Segundo: Calcular los parámetros estadísticos como la media y desviación estándar; asignar un nivel de confiabilidad y margen de error.

Tercero: Calcular el número mínimo de corridas con la ecuación ya mencionada.

Cuarto: Comparar el valor del número mínimo de corridas de la ecuación con el número de corridas del modelo. De ello se tendrán dos opciones:

- Número de corridas del modelo es mayor al número mínimo de corridas, la evaluación será suficiente.
- Número de corridas del modelo es menor al número mínimo de corridas. Se volverá al primer paso donde se asignará otra cantidad de corridas y hasta conseguir que el N. (corridas) sea mayor al N. (mínimo).

2.2.9.3. Warm up (tiempo de estabilidad)

El tiempo de estabilidad es aquel periodo necesario para lograr conseguir la mayor cantidad de vehículos, ya que

inicialmente ningún vehículo está presente en el modelo. Por ello se recomienda tomar datos estadísticos (longitud de cola, tiempo de viaje, etc.) a partir del periodo posterior. La FHWA afirma que el tiempo de estabilidad (Warm up) es 10 minutos como mínimo en la simulación.

2.2.9.4. Interacción de vehículos

Los modelos microscópicos se basan en la interacción vehicular (vehículos y peatones). La interacción entre vehículos se puede desarrollar de dos maneras: seguimiento vehicular y cambio de carril (Fellendorf & Vortish, 2010).

2.2.9.5. Calibración del modelo

El desarrollo de la calibración es un proceso iterativo el cual busca que el modelo realizado refleje con precisión la situación actual, a partir de datos recogidos en campo. La calibración del modelo consiste en comparar parámetros como: longitud de cola, velocidad de viaje, entre otros de las cifras arrojadas por el modelo y los datos de campo (Alcalá Ramos, 2016).

2.2.9.6. Validación del modelo

La validación es el proceso de verificar los parámetros modificados dentro del programa en el desarrollo de la calibración, si coinciden con los resultados del programa con los datos observados en campo, para ser apto a la evaluación de resultados (Benekohal, 1991).

Modelo de Wiedemann

El modelo de Wiedemann, utiliza dos versiones la 74 y 99. "La principal diferencia es que el primer modelo cuenta con tres parámetros que modificar y el segundo cuenta con diez; Wiedemann 99 permite realizar una calibración más fina si se cuenta con suficiente información para hacerlo" (PTV GROUP, 2014, p. 7).

Estos modelos nacen de la percepción y reacción humana ante las distintas situaciones del tráfico vehicular que incorporan variaciones estocásticas. Wiedemann considera 4 posibles áreas en la que atraviesan los conductores frente al tráfico vehicular y son (Fellendorf & Vortish, 2010):

Área de libre movimiento: Se da cuando el movimiento del vehículo es libre ya que no existe interacción entre vehículo líder y seguidor.

Área de acercamiento: Se da cuando el conductor del vehículo adapta su velocidad a la velocidad más baja de un vehículo anterior.

Área de seguimiento: Se da cuando el conductor del vehículo líder y seguidor entran en un proceso de seguimiento inconsciente, manteniendo la distancia de seguridad deseada aproximadamente constante, ya que se ve influenciado por el vehículo líder de menor velocidad.

Área de frenado o desaceleración: Se da cuando el conductor seguidor modifica repentinamente su velocidad (fase de desaceleración), ya que no cuenta con una distancia segura frente al otro vehículo.

Así mismo, en la presente tesis se utilizará el modelo Wiedemann 74, ya que nuestro estudio está enfocado en el transito urbano, con el fin de calibrar el modelo en el Software Vissim.

2.2.10.1Definición de los parámetros del modelo Wiedemann 74

Los parámetros que intervienen en el modelo Wiedemann 74 se definirán a continuación:

Tabla 2. Parámetros del modelo Wiedemann 74

PARÁMETROS	DESCRIPCIÓN
1. DISTANCIA	(ax): Define la distancia promedio deseada
PROMEDIO	entre dos autos. La tolerancia se encuentra
DE PARADA	entre -1.0 m y +1.0 m, que se distribuye
	normalmente a alrededor de 0.0 m, con una
	desviación estándar de 0.3 m. Valor
	predeterminado 2.0.
2. PARTE	(bxadd): Valor utilizado para el cálculo de la
ADITIVA DE	distancia de seguridad deseada d. Permite
LA	ajustar los valores de requisitos de tiempo.
DISTANCIA	Por defecto 2.0.
DE	
SEGURIDAD	
3. PARTE	(bxmult): Valor utilizado para el cálculo de
MULTIPLICA	la distancia de seguridad deseada d.
TIVA DE LA	Permite ajustar los valores de requisitos de
DISTANCIA	tiempo. Mayor valor = mayor distribución
DE	(desviación estándar) de la distancia de
SEGURIDAD	seguridad Valor predeterminado 3.

Fuente: PTV VISSIM (2018)

De la ecuación de la distancia requerida se calcula a partir de:

$$d=ax+bx$$

Donde:

ax = Distancia de parada

$$bx = \left(\mathrm{bx}_{add} + bx_{mult} * z \right) * \sqrt{v}$$

v = Velocidad del vehículo (m/s)

z = Valor entre 0 y 1, que normalmente se distribuye alrededor de 0.5 con una desviación estándar de 0.15.

2.2.10 Determinación del Nivel de Servicio (LOS)

El nivel de servicio hace referencia al estado transitable de la vía y es una medida cualitativa ya que describe las características externas e internas del flujo vehicular a partir de la perspectiva de los conductores y/o pasajeros.

Para determinar el nivel de servicio de una intersección está directamente relacionado con la demora promedio por controles por vehículo. A continuación, en la Tabla 3 se detalla los niveles de servicio adaptado del programa VISSIM 9.0.

Tabla 3. Niveles de Servicio

VISSIM							
Demora de control (s/veh)	Nivel de Servicio						
0-10	Α						
10-20	В						
20-35	С						
35-55	D						
55-80	E						
80 +	F						

Fuente: Propia, adaptado del VISSIM 9.0

2.3 Definiciones Conceptuales

2.3.1 Congestión Vehicular

Se habla de congestión vehicular cuando la demanda del flujo vehicular es mayor a la oferta vial, saturándose las vías en horas punta. Así mismo, generan pérdidas de tiempo, consumo adicional de combustible, riesgo de accidentes, entre otros.

2.3.2 Flujo Vehicular

Se puede entender del flujo vehicular aquellas características y comportamiento del tránsito, que son requisitos básicos para el planeamiento, proyecto y operación de las vías.

En el análisis del flujo vehicular se relacionan sus diferentes variables como el volumen, la velocidad, la densidad, el intervalo y el espaciamiento.

2.3.3 Ciclo del Semáforo

La longitud de ciclo, es el tiempo necesario para que el disco indicador del semáforo efectué una revolución completa dentro de su programación, se distribuirá en todas las indicaciones (verde, ámbar y rojo) de señal de semáforo para las intersecciones en cada fase.

2.3.4 Automóvil

Es un modo de transporte terrestre de personas con mayor área de demanda en las zonas urbanas, siendo el agente causante de la congestión vehicular, ocasionando accidentes de tránsito por parte de los conductores, peatones y ciclistas.

2.3.5 Deprimido vial

Es aquel pase a desnivel inferior en el que la viabilidad pasa por debajo de otra vía. Esta investigación propone una depresión en la vía transversal de la Carretera central que interseca con el Puente Señor de Burgos, para reducir la congestión vehicular que se presenta a diario en la zona de estudio.

2.3.6 Vissim 9.0

Vissim, es un modelo de microsimulación de tráfico que puede representar interacciones entre peatones y vehículos de manera realista. En el siguiente párrafo, se presenta una descripción del modelo Vissim, desarrollado por la compañía alemana Planung Transport Verkehr (PTV).

Vissim permite analizar la operación del tráfico bajo condiciones muy específicas como: uso especial de carriles, composiciones de tránsito, programación de señales de tránsito, etcétera; lo que lo hace una herramienta muy útil para la evaluación de alternativas de ingeniería y planeación de transporte. (PTV GROUP, 2014, p. 5)

2.3.7 Modelación

La modelación es un método de investigación mediante el cual se crea una representación o modelo para explicar la realidad. En esta investigación se modela la situación actual del flujo vehicular de los accesos al Puente Señor de Burgos con el programa Vissim 9.0.

2.3.8 Simulación

La simulación es una técnica para diseñar un modelo de un sistema real que referencia la investigación de una hipótesis o un conjunto de hipótesis. Para la investigación se simulará dos escenarios futuros con una proyección a 10 años.

2.4 Hipótesis

Mediante una propuesta de diseño geométrico y adecuada señalización, se podrá mejorar los niveles de servicio de los accesos al Puente Señor de Burgos en la ciudad de Huánuco, para reducir la congestión vehicular.

2.5 Variables

2.5.1 Variable dependiente(Y)

Niveles de Servicio.

2.5.2 Variable independiente (X)

Congestión Vehicular de los accesos al Puente Señor de Burgos.

2.6 Operacionalización de variables

En la Tabla 4, se muestra la operacionalización de las variables, donde se han desarrollado en función a sus dimensiones e indicadores.

Tabla 4. Operacionalización de variables

VARIABLE	DIMENSION	INDICADOR	MEDICION
Y: Niveles de Servicio	Longitud de Cola	• Tiempo de Demora	• Seg/Veh
X: Congestión Vehicular de los accesos al Puente Señor de Burgos	Aforo Vehicular	 Flujo Vehicular Densidad Vehicular Velocidad 	Veh/HrVeh/KmKm/Hr

Fuente: Elaboración Propia

CAPÍTULO III

3 METODOLOGÍA DE LA INVESTIGACIÓN

Tipo de Investigación

Tomando como referencia a los autores Hernández Sampieri, Fernández Collado, & Baptista Lucio (2014), para el desarrollo de la presente investigacion se desarrollara a continucion el enfoque, alcance y diseño de investigacion.

3.1.1 Enfoque de Investigación

La presente investigación reúne las condiciones suficientes para ser catalogado como una investigación cuantitativa, ya que las variables a estudiar son cuantificables para probar hipótesis y analizar estadísticamente, a los cuales se accede por medio de observaciones y mediciones (Hernández Sampieri, Fernández Collado, & Baptista Lucio, 2014).

3.1.2 Alcance de Investigación

Según Hernández Sampieri, Fernández Collado, & Baptista Lucio (2014) los alcances para la presente investigación cuantitativa se clasificarán en una investigación descriptiva y explicativa.

Descriptiva: Indaga la incidencia de las variables tal como se observa en un ambiente natural (Describe la congestión vehicular en los accesos del Puente Señor de Burgos).

Explicativa: Busca explicar el porqué de los hechos en las que se manifiesta las causas y efectos del problema de investigación (Factores que generan la congestión vehicular en los accesos del Puente Señor de Burgos).

3.1.3 Diseño de la Investigación

El diseño de la investigación a desarrollar es del tipo no experimental, ya que el proceso de recolección de datos para la investigación, se basa fundamentalmente en la observación de las

variables de los accesos del Puente Señor de Burgos, sin intervenir en su desarrollo.

3.2 Población y Muestra

El estudio de la presente investigación se realizará en los accesos del Puente Señor de Burgos de la ciudad de Huánuco.

3.2.1 Población de Estudio

La población a estudiar está constituida por todos los vehículos motorizados que pertenecen al parque automotor de los accesos al Puente Señor de Burgos.

3.2.2 Tamaño de Muestra

Para determinar el tamaño de muestra de la presente investigación, se ha considerado el tipo de muestreo no probabilístico de selección intencional.

Se analizará el comportamiento del tráfico vehicular en hora punta y se trabajará con una estimación de crecimiento del parque automotor a un periodo de 10 años, ya que es una propuesta de gran envergadura. A continuación, se explicará el procedimiento de la estimación de crecimiento del parque automotor.

a) Estimación de crecimiento del parque automotor (población futura)

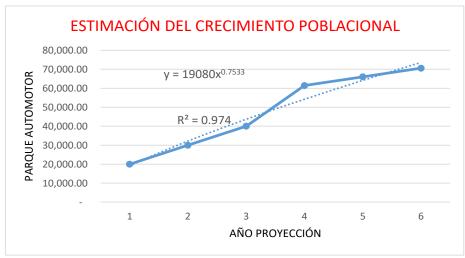
En todo proyecto de ingeniería de transporte, es sumamente importante evaluar la propuesta de mejora en un tiempo futuro. Por lo tanto, se estudiará dos escenarios futuros sin propuesta y con propuesta de mejora, para un periodo de diseño de 10 años.

b) Datos estadísticos del parque automotor

De primera instancia para calcular los niveles de servicio de los escenarios ya mencionados, se debe determinar el nuevo flujo vehicular con dicha proyección a 10 años. Por ello la presente investigación se basó en datos oficiales acerca del crecimiento poblacional del parque automotor, proporcionados por la Asociación de representantes automotrices del Perú (ARAPER), Municipalidad Provincial de Huánuco (MPH), Dirección Territorial de la Policía Nacional del Perú (DIRTEPOL-HUÁNUCO).

c) Cálculo de la estimación del crecimiento del parque automotor

Para conocer el crecimiento del parque automotor de la ciudad de Huánuco, esta se basó en el cálculo de la ecuación de regresión con la técnica de mínimos cuadrados ya que cuenta con datos pasados respecto al año 2019. En la Tabla 5 se muestra la cantidad vehicular que circulan en la ciudad de Huánuco del 2012 al 2017.


Tabla 5. Parque automotor en circulación de la ciudad de Huánuco, 2012-2017

Ciudad	2012	2013	2014	2015	2016	2017
Huánuco	19 964	30 000	40 000	61 431	66 000	70 562

Fuente: Propia

La curva de crecimiento del parque automotor se ajusta a la línea de tendencia para una representación lineal, logarítmica, exponencial, polinómica o potencial. Para la investigación de todas las tendencias la que más se adecua es la ecuación de regresión potencial ya que el coeficiente de determinación se aproxima a la unidad, siendo este valor de 0.974, como se muestra en la Figura 8.

Figura 8. Ecuación de la curva de crecimiento poblacional

En relación a la ecuación polinómica calculada, se proyectará el flujo vehicular para un periodo de diseño de 10 años, desde el año 2020 al 2029, con su respectivo porcentaje de crecimiento.

A continuación, en la Tabla 6 se puede apreciar los datos históricos del 2012 hasta el 2017, proyección del parque automotor del 2018 al 2019 y de este último año, 10 años después al 2029.

Tabla 6. Estimación del crecimiento poblacional del parque automotor en circulación para 10 años

DATOS	AÑO PROYECCION	AÑO	POBLACION	% DE CRECIMIENTO	% CREC. RESPECTO 2019
	1	2012	19,964.00		
	2	2013	30,000.00		
DATOS	3	2014	40,000.00		
HISTORICOS	4	2015	61,431.00		
	5	2016	66,000.00		
	6	2017	70,562.00		
PROYECC. DEL PARQUE	7	2018	73,579.99		
AUTOMOTOR (AÑO ACTUAL)	8	2019	82,640.08	12.31%	
	9	2020	91,385.24	24.20%	10.58%
	10	2021	99,864.07	35.72%	20.84%
	11	2022	108,113.11	46.93%	30.82%
	12	2023	116,160.77	57.87%	40.56%
PROYECC. DEL PARQUE	13	2024	124,029.67	68.56%	50.08%
AUTOMOTOR (T= 10 AÑOS)	14	2025	131,738.25	79.04%	59.41%
	15	2026	139,301.77	89.32%	68.56%
	16	2027	146,733.04	99.42%	77.56%
	17	2028	154,042.99	109.35%	86.40%
	18	2029	161,241.02	119.14%	95.11%

d) Estimación del flujo vehicular para 10 años

En la Tabla 6 se observa que el porcentaje de crecimiento poblacional es de 95.11%, valor calculado para un periodo de 10 años del 2019 al 2029, entonces el flujo vehicular actual será proyectado con el porcentaje de crecimiento calculado. En la sección ANEXOS N°16, se presenta el nuevo flujo vehicular proyectado al 2029.

3.3 Técnicas e instrumentos para la recolección de datos

Para alcanzar los objetivos de la presente investigación, se procedió a la toma de datos de campo de dicha intersección en estudio con la finalidad de obtener datos reales, mediante el uso de técnicas e instrumentos, que a continuación se dará más a detalle.

3.3.1 Para la recolección de datos de campo

a) Técnicas

Las técnicas a emplear para el desarrollo de la presente investigación son los siguientes:

Levantamiento topográfico:

Ante la carencia de datos reales de la infraestructura vial, se llevó a cabo el levantamiento topográfico en horas de la madrugada, debido a los elevados flujos vehiculares que existe en dicha zona de estudio. Esta actividad consiste en registrar una serie de características de la zona de estudio tal como las dimensiones de calzada, vereda, rampas, estacionamiento, entre otros.

Aforo vehicular

Debido a que no existe un punto estratégico para la instalación de cámaras en la zona de estudio, se optó a estudiar mediante la metodología de conteo manual, con la ayuda de un equipo de trabajo previamente capacitado por la tesista.

Para estudiar el comportamiento del flujo vehicular en dichas intersecciones, se realizó durante 3 días representativos, en las fechas 12,14 y 15 de junio del 2019, en los periodos de (6:00 - 9:00 am, 12:00 - 15:00pm y 17:00 - 20:00pm); en tres turnos durante 9 horas del día.

Los conteos vehiculares se llevaron a cabo en intervalos de 15 minutos por tipo de vehículos. La clasificación vehicular a utilizar es: Auto, Bus, Micro, Camión, Moto taxi y Moto lineal como se aprecia en el formato de la sección ANEXOS N° 06.

Aforo peatonal

Se contabilizó de manera manual la cantidad de peatones que circulan por los accesos al Puente Señor de Burgos en la hora punta de dicho aforo vehicular y se podrán observar en la sección ANEXOS N° 14 y 15.

• Codificación de movimientos vehiculares y peatonales

Para facilitar el procesamiento de datos de conteo vehicular y peatonal, es importante identificar los sentidos de circulación, con el fin de unificar los movimientos y codificar los ramales de ingreso y acceso a cada intersección. En la Figura 9, 10,11 y 12, se puede observar las nomenclaturas utilizadas.

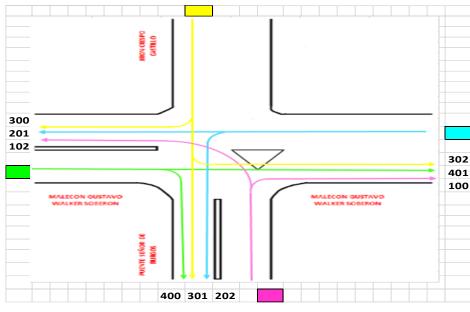


Figura 9. Codificacion de movimientos vehiculares en la Intersección 1.

Fuente: Elaboración Propia

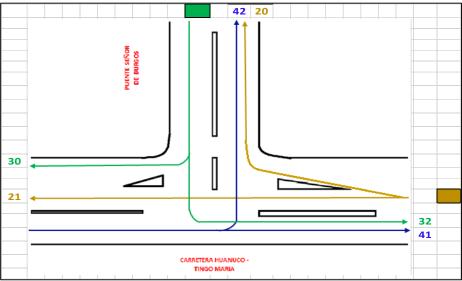


Figura 10. Codificacion de movimientos vehiculares en la Interseccion 2.

Fuente: Elaboración Propia

NS-P8

NS-P8

MALECON GUSTAVO WALKER SOBERON

SN-P7

PTE. SEÑON DE BURGOS

FO-P6

OE-P5

Figura 11. Codificacion de movimientos peatonales en la Interseccion 1.

DE-P9

PTE. SEÑOR DE BURGOS

EO-P14

NS-P16

CARRETERA CENTRAL

SN-P15

SN-P15

OE-P13

SN-P11

Figura 12. Codificacion de movimientos peatonales en la Interseccion 2.

Fuente: Elaboración Propia

• Identificación de estaciones de aforo

La identificación de puntos estratégicos para el conteo vehicular-peatonal, es importante porque facilita al aforador en la toma de datos. En la presente tesis se identificó 7 estaciones de aforo vehicular y 4 para peatonal, como se muestra en las figuras 13 y 14.

Figura 13. Estación de aforo vehicular de la intersección

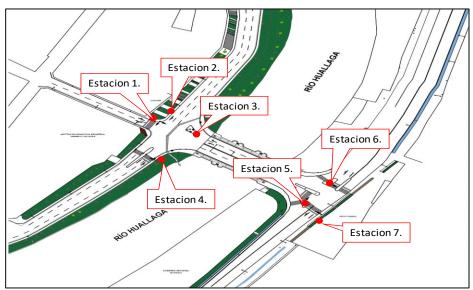
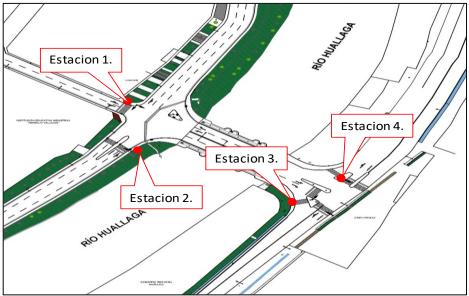



Figura 14. Estacion de aforo peatonal de la intersección

Fuente: Elaboración Propia

• Tiempo de semáforo

Con la ayuda de un cronómetro se registró el ciclo semafórico de los 6 semáforos vehiculares y 3 peatonales; de las cuales se determinaron 5 fases y se puede apreciar en la Figura 15 y 16.

FASE 01

FASE 02

MALECON GUSTAVO
WALKEN SCIERON

Figura 15. Intersección 1, con dos fases del ciclo semafórico

FASE 01

FASE 02

FASE 03

DOMAND 10

DOMAND

Figura 16. Intersección 2, con tres fases del ciclo semafórico

Fuente: Elaboración Propia

• Señalización horizontal y vertical

En esta actividad se realizó un inventario de las cantidades, medidas y ubicaciones de las señalizaciones horizontales y verticales.

• Longitud de cola

Para determinar la longitud de cola de los accesos de entrada y salida al Puente Señor de Burgos, se llevó a cabo en

la hora de máxima demanda vehicular calculada que fue de 17:45 – 18:45 pm. Para la recolección de datos de colas vehiculares, se tomó como referencia marcaciones provisionales sobre las veredas, con la finalidad de facilitar la toma de mediciones conformada por cada acceso sanforizado como se muestra en la Figura 17.

L.C 1

L.C 3

L.C 4

L.C 4

L.C 6

Figura 17. Accesos asignados para la medición de colas en la Intersecciones

Fuente: Elaboración Propia

b) Instrumentos

Para recoger, validar y analizar la información se aplicaron las siguientes técnicas de investigación:

- Plantilla de aforo vehicular:
- Plantilla de aforo peatonal
- Cinta métrica (50 m)
- Cámara fotográfica
- Laptop
- Reloj de mano

3.3.2 Para la presentación de datos

Después de la recolección de datos en campo, se procesará la información con el programa Microsoft Excel 2016, mediante tablas y gráficos estadísticos para su presentación.

3.3.3 Para el análisis e interpretación de los datos

Analizando las mediciones recolectadas en campo, se empleará la estadística descriptiva por la naturaleza de la investigación, con la ayuda de los programas de ingeniería AutoCAD 2015, Sketchup 2018, PTV Vissim 9.0 y Winstats.

Para el procesamiento de datos cuantitativos como es el caso de esta investigación, se explicará mediante herramientas estadísticas necesarias para interpretar los resultados obtenidos en campo.

CAPÍTULO IV

4 RESULTADOS

4.1 Procesamiento de datos

4.1.1 Procesamiento de los datos de campo

Levantamiento topográfico

De los datos recolectados en campo, se procedió a la elaboración a escala del plano de diseño geométrico, que a posteriori se utilizara como imagen del modelo en el programa de ingeniería Vissim 9.0. Así mismo en la sección ANEXOS N° 02 se puede apreciar el plano mencionado.

Aforo vehicular

Luego de haber contabilizado los vehículos en los accesos del Puente señor de Burgos, se presenta el Flujograma donde indica la mayor demanda vehicular por cada maniobra realizada.

Para obtener la hora pico se consideró el análisis de toda la intersección de la zona de estudio, de manera global. Por lo tanto, seria único para toda la intersección y se podrá verificar en el ANEXO N° 11 y 12.

Aforo peatonal

De manera similar al aforo vehicular, se contabilizo los peatones en el formato establecido (Flujograma) y se puede apreciar en la sección ANEXOS N° 14 y 15.

Tiempo de semáforo

En la Figura 18 y 19 se puede visualizar el tiempo de las fases de los semáforos vehiculares y peatonales ubicados dentro de la zona de estudio.

Figura 18. Tiempo de las fases de los semaforos de la interseccion 1

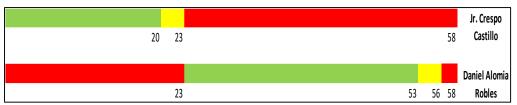
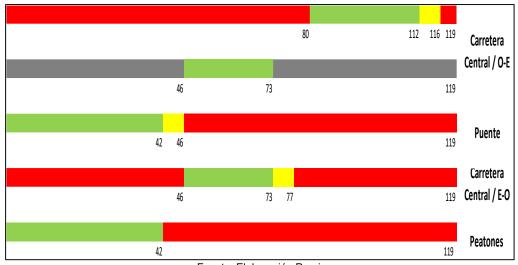



Figura 19. Tiempo de las fases de los semáforos de la intersección 2

Fuente: Elaboración Propia

Señalización horizontal y vertical

El plano de diseño de señalización actual de la zona de estudio, se puede apreciar en la sección ANEXOS N° 03.

· Longitud de cola

De los datos tomados en campo de longitud de cola de los vehículos de cada acceso asignado, se presenta los resultados obtenidos en la Tabla 7. Además, se calculó el promedio y la desviación estándar, pues estos valores serán utilizados para la calibración de la modelación vehicular.

Tabla 7. Registro de Longitud de cola e los accesos asignados en las intersecciones de estudio

REGISTRO DE LONGITUD DE COLA EN LA HORA PUNTA DE LOS ACCESOS AL PUENTE SEÑOR DE BURGOS - (17:45-18:45 PM)

	ACCESO					
N° DATOS	JR. CRESPO CASTILLO (N-S)	MALECON (E-O)	MALECON (O-E)	PTE. BURGOS (N-S)	CARRETER A CENTRAL (E-O)	CARRETER A CENTRAL (O-E)
1	18.00	20.00	25.00	28.00	120.00	20.00
2	20.00	21.50	23.00	27.00	123.00	25.00
3	22.30	14.00	18.00	25.00	123.00	28.00
4	25.00	20.60	19.00	33.00	120.00	24.00
5	22.00	30.00	20.00	25.00	130.00	30.00
6	20.80	25.00	18.00	30.00	141.00	33.00
7	17.00	25.60	19.00	28.00	115.00	31.00
8	10.00	28.00	19.00	34.00	117.00	36.00
9	18.00	23.00	22.40	30.00	120.00	27.00
10	21.00	22.00	21.00	33.00	126.00	29.00
11	22.00	21.80	20.00	35.00	133.00	18.00
12	19.00	22.00	15.00	29.00	144.00	33.00
13	17.50	22.80	10.00	30.00	112.00	35.00
14	20.00	27.00	15.00	31.00	136.00	40.00
15	15.00	28.00	20.00	36.00	137.00	45.00
16	17.70	24.00	18.00	32.00	148.00	38.00
17	22.00	27.70	22.00	27.00	151.00	31.00
18	20.00	28.00	2.00	20.00	134.00	29.00
19	17.00	30.00	10.00	34.00	140.00	27.00
20	20.00	20.00	21.00	30.00	133.00	28.00
21	22.00	23.00	19.00	33.00	140.00	38.00
22	10.00	18.00	15.00	32.00	132.00	35.00
23	12.00	15.00	10.00	35.00	134.00	29.00
24	15.00	19.00	16.00	34.00	132.00	37.00
25	21.90	20.00	18.00	28.00	135.00	31.00
26	17.00	19.00	17.00	25.00	140.00	40.00
27	15.00	17.00	19.50	27.00	124.00	30.00
28	18.00	15.00	14.80	35.00	133.00	29.00
29	16.70	19.00	20.00	29.00	123.00	33.00
30	20.00	20.00	21.00	30.00	130.00	37.00
omedio	18.40	22.20	17.59	30.17	130.87	31.53
ión Estanda	3.60	4.43	4.71	3.76	9.74	5.96

Fuente: Elaboración Propia

4.1.2 Construcción del modelo, calibración y validación del proyecto

4.1.2.1 Construcción del modelo

Para la construcción del modelo de microsimulación en el programa Vissim 9.0, se tomó como información de entrada a la base de datos recolectados en campo. Pues a continuación se

pasará a presentar los pasos más relevantes para la construcción del mismo:

• Imagen de fondo (Background)

Para la creación de la red vial, se utilizó como referencia al plano geométrico de la intersección, como se aprecia en la Figura 20.

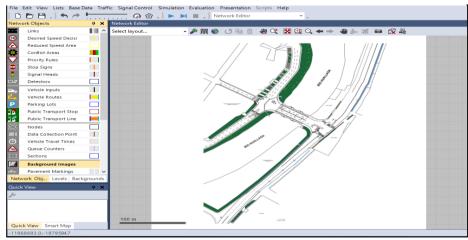
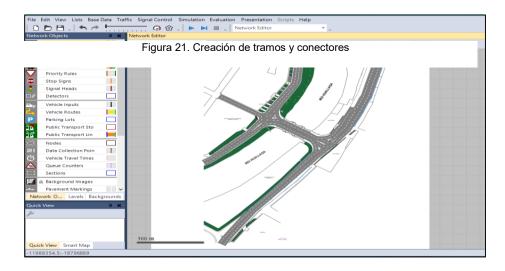



Figura 20. Imagen de fondo del proyecto

Fuente: Elaboración Propia

Tramos y Conectores (Links)

Con la herramienta Links, se puede construir tramos y conectores de las vías vehiculares y peatonales. Para crear tramos se deberán definir las características básicas como: número de carriles, ancho, dirección y longitud. Por otro lado, los conectores generan giros uniendo par de tramos. En la Figura 21

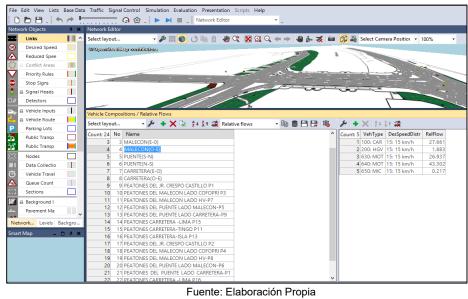
se puede apreciar la creación de tramos y conectores del proyecto.

Fuente: Elaboración Propia

• Composición vehicular (Vehicle Compositions)

En la composición vehicular se define la cantidad porcentual por tipo de vehículos existentes en cada acceso, además la velocidad de flujo libre. A continuación, en la Tabla 8 y 9 se puede apreciar el registro por tipo de vehículo en cada acceso de la zona de estudio y en la Figura 22 la composición vehicular insertada al programa.

Tabla 8. Registro por tipo de vehiculo en cada acceso – Interseccion 1.


TIPO DE		SUR-1	NORTE			NOR	TE - SUR			ESTE-C	DESTE			OESTE	- ESTE		TOTAL	%
VEHICULO	100	101	102	103	300	301	302	303	200	201	202	203	400	401	402	403	TOTAL	76
AUTO	240	0	305	0	54	108	4	0	0	205	134	0	210	172	0	0	1432	29.30
BUSES	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0.02
MICROBUSES	0	0	0	0	1	0	0	0	0	5	4	0	1	2	0	0	13	0.27
CAMION	5	0	3	0	3	4	0	0	0	18	16	0	20	6	0	0	75	1.53
MOTOTAXI	347	0	433	0	86	308	8	0	0	215	199	0	329	269	0	0	2194	44.89
MOTO LINEAL	161	0	188	0	37	162	3	0	0	151	98	0	230	142	0	0	1172	23.98
																	4887	100.00
	100	101	102	103	300	301	302	303	200	201	202	203	400	401	402	403	TOTAL	
TOTAL VEH.	754	0	929	0	181	582	15	0	0	594	451	0	790	591	0	0	4887	
UCP	571.38	0	700.79	0	141.71	404.46	10.99	0	0	480.08	371.59	0	594.65	442.61	0	0	3718.3	
TIPO DE	100	101	102	103	300	301	302	303	200	201	202	203	400	401	402	403	TOTAL	%
TRANSPORTE																		
TRANSP. PRIV.	748	0	926	0	177	578	15	0	0	571	431	0	769	583	0	0	4798	98.18
TRANSP. PUBL.	1	0	0	0	1	0	0	0	0	5	4	0	1	2	0	0	14	0.29
TRANSP. PES.	5	0	3	0	3	4	0	0	0	18	16	0	20	6	0	0	75	1.53
																	4887	100.00
TOTAL	754	0	929	0	181	582	15	0	0	594	451	0	790	591	0	0		
%	15.43	0.00	19.01	0.00	3.70	11.91	0.31	0.00	0.00	12.15	9.23	0.00	16.17	12.09	0.00	0.00		

Fuente: Elaboración Propia

Tabla 9. Registro por tipo de vehiculo en cada acceso - Intersección 2

TIPO DE		NORT	E - SUR			ESTE-O	ESTE			OESTI	- ESTE		TOTAL	%
VEHICULO	30	31	32	33	20	21	22	23	40	41	42	43	IUIAL	70
AUTO	216	0	175	0	155	286	0	0	0	378	377	0	1587	30.25
BUSES	0	0	1	0	0	1	0	0	0	0	0	0	2	0.04
MICROBUSES	0	0	3	0	1	7	0	0	0	9	6	0	26	0.50
CAMION	7	0	20	0	10	42	0	0	0	52	1	0	132	2.52
MOTOTAXI	505	0	518	0	446	201	0	0	0	399	380	0	2449	46.67
MOTO LINEAL	228	0	150	0	180	202	0	0	0	164	127	0	1051	20.03
													5247	100.00
	30	31	32	33	20	21	22	23	40	41	42	43	TOTAL	
TOTAL VEH.	956	0	867	0	792	739	0	0	0	1002	891	0	5247	
UCP	690.99	0	682	0	580.9	646.41	0	0	0	905.37	718.91	0	4224.6	
TIPO DE TRANSPORTE	30	31	32	33	20	21	22	23	40	41	42	43	TOTAL	%
TRANSP. PRIV.	949	0	843	0	781	689	0	0	0	941	884	0	5087	96.95
TRANSP. PUBL.	0	0	4	0	1	8	0	0	0	9	6	0	28	0.53
TRANSP. PES.	7	0	20	0	10	42	0	0	0	52	1	0	132	2.52
													5247	100.00
TOTAL	956	0	867	0	792	739	0	0	0	1002	891	0		
%	18.22	0.00	16.52	0.00	15.09	14.08	0.00	0.00	0.00	19.10	16.98	0.00		

Figura 22. Composicion vehicular del modelo

Fuente: Elaboración Propia

Datos de entrada

Una vez realizado el diseño de las vías y definido la composición vehicular (vehículos y peatones), el siguiente paso es ingresar los datos registrados en campo, como la cantidad de flujo vehicular y peatonal en la hora de máxima demanda. Así mismo el ciclo semafórico.

Entradas vehiculares (vehicule inputs): En la herramienta vehicule inputs se define el volumen de vehículos y peatones para cada acceso de la intersección. Por ejemplo, en el acceso (Norte – Sur) del Jr. Crespo Castillo, el volumen vehicular es de 778 vehículo / hora, como se aprecia en la siguiente figura.

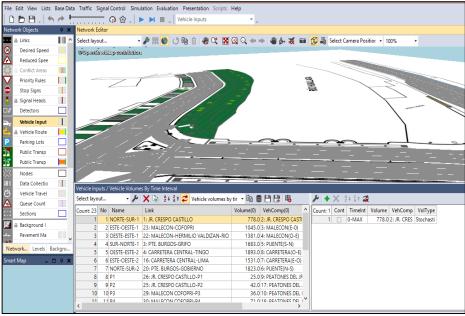


Figura 23. Volumen vehicular de la hora pico en cada acceso del proyecto

Fuente: Elaboración Propia

Asignación de rutas (vehicule routes – static): Luego de haber definido el volumen vehicular de la hora pico de cada acceso, se asignará todos los posibles movimientos originado por los vehículos y peatones en porcentaje de distribución. En la Figura 24 se toma como ejemplo al Jr. Crespo Castillo, donde los vehículos presentan 3 rutas con una determinada distribución.

Señales de control (Signal Control)

Aplicado los pasos anteriores, ya se puede tener el funcionamiento del modelo, pero sin ningún control semafórico. Es por ello que con la herramienta Signal Control se podrá crear semáforos vehiculares y peatonales dentro del sistema.

En la intersección del Puente Señor de Burgos con el Malecón Gustavo Walker Soberon y el Jr. Crespo Castillo el ciclo semafórico es de 58 segundos compuesto en dos fases y cuenta con tres semáforos vehiculares. Asimismo, en la intersección 2 el Puente Señor de Burgos con la Carretera Central el ciclo semafórico es de 119 segundos compuesto en cinco fases y cuenta con tres semáforos vehiculares y tres peatonales.

A continuación, en la Figura 25 se muestra la creación de los semáforos vehiculares y peatonales de las intersecciones en estudio.

Figura 25. Programación semaforica de las intersecciones en estudio

Áreas de conflicto (Conflict Areas)

Esta herramienta sirve para establecer las reglas de prioridad entre vehículo – vehículo y vehículo – peatón.

Vehículo – Vehículo: Se da prioridad al vehículo que circula por la vía principal.

Vehículos – Peatones: Es cuando el vehículo cede el paso al peatón para que pueda cruzar totalmente la vía.

Una vez especificado las reglas de prioridad de movimiento, se llevará a cabo el funcionamiento de dichas intersecciones en estudio. En la Figura 26 se aprecia la modelación en 3D de la circulación de vehículos y peatones.

| Relation Transport | Network Editor |

Figura 26. Circulacion de vehiculos y peatones de la situacion actual del proyecto

4.1.2.2 Verificación del modelo

Finalmente, en este paso consiste en verificar los datos ingresados al modelo para corroborar que los registros de campo sean lo más parecido al contexto de la realidad. Asimismo, es importante realizar las corridas al modelo, para observar el funcionamiento de las señalizaciones y las reglas de prioridad.

4.1.2.3. Calibración del modelo

El programa Vissim es un modelo de microsimulación, cuyas características están en función al tráfico de Estados Unidos, por ello la importancia de la calibración del modelo, con la finalidad de reflejar el tráfico vehicular de la situación actual de estudio al modelo.

Para llevar a cabo la calibración se debe modificar los parámetros de Wiedemann 74, haciendo correr al programa las veces que se necesaria hasta obtener valores que se asemejen a los datos recolectados en campo como la longitud de cola, tiempo de viaje; entre otros. La variable a estudiar para la calibración de los parámetros de Vissim en los 6 accesos semaforizados del

Puente Señor de Burgos son los datos de la longitud de cola de los vehículos.

Parámetros de evaluación

Los parámetros de Wiedemann 74 por defecto el programa Vissim, no demuestran ajustarse a la realidad del flujo vehicular de la zona de estudio, es por ello que se debe modificar los valores de los parámetros, hasta obtener una media muestral más cercana obtenida en campo. Por cada parámetro evaluado se hizo correr 15 veces a la microsimulación, valor que supera el número mínimo de corridas necesarias para ser representativas. Para el primer intento de calibración se hizo correr la microsimulación con los parámetros por defecto, las demás con valores modificados, obteniendo así un total de 23 combinaciones como se presenta en la Tabla 10.

De lo mencionado anteriormente, el primer intento no cumple los estándares considerados al estilo de manejo en el Perú, ya que los parámetros por defectos de ax, bx (add) y bx (mult), fueron 2, 3 y 3 respectivamente. De ello se puede decir que la distancia de seguridad entre vehículos detenidos es de 2m; distancia no reflejada a la realidad de la zona de estudio.

Tabla 10. Iteración de Parámetros Wiedemann para la Calibración del modelo microscópico

CALIBRACIÓN DEL MODELO - LONGITUD DE COLA JR. CRESPO CASTILLO (N-S) MALECON (E-O) MALECON (O-E) PTE. BURGOS (N-S) CARRETERA CENTRAL (E-O) CARRETERA CENTRAL (O-E) VISSIM CAMPO VISSIM CAMPO VISSIM CAMPO VISSIM CAMPO VISSIM **CAMPO** VISSIM CAMPO N° DE Desvia bx_{add} ITERAC. a_x bx_{mul} Media c Est. 22.20 2 2 35.74 0.50 18.40 3.60 60.44 0.50 4.43 30.04 0.80 17.59 4.71 41.64 10.00 30.17 3.76 138.49 0.00 130.87 9.74 54.43 0.00 31.53 5.96 2 2 3.71 22.20 17.59 30.17 3.76 130.87 5.96 2 34.77 1.00 18.40 3.60 64.09 4.43 29.88 1.16 4.71 40.30 11.37 139.12 0.86 9.74 53.95 10.49 31.53 2 2 3 33.72 1.77 18.40 3.60 49.29 20.71 22.20 4.43 27.50 13.31 17.59 4.71 49.27 11.81 30.17 3.76 136.17 4.21 130.87 9.74 50.71 14.53 31.53 5.96 1.5 32.64 2.50 18.40 3.60 45.17 19.35 22.20 4.43 26.76 13.15 17.59 4.71 39.11 11.60 30.17 3.76 131.89 8.40 130.87 9.74 48.36 15.70 31.53 5.96 5 20.82 22.20 130.87 5.96 31.25 3.60 18.40 3.60 4.43 26.16 13.07 17.59 4.71 39.33 11.50 30.17 3.76 127.76 12.48 46.75 16.06 31.53 22.20 6 0.75 3.80 18.40 3.60 35.38 21.14 4.43 25.83 12.90 17.59 4.71 38.68 12.00 30.17 3.76 125.31 12.68 130.87 45.52 16.20 31.53 5.96 0.5 0.75 29.91 3.90 18.40 32.97 20.46 22.20 4.43 12.88 17.59 4.71 12.43 30.17 3.76 122.84 13.24 130.87 44.44 16.33 31.53 5.96 1 3.60 25.41 38.05 0.25 0.25 28.67 4.90 18.40 31.65 19.46 22.20 4.43 12.69 17.59 4.71 38.17 13.27 30.17 3.76 120.92 13.40 130.87 9.74 17.05 31.53 5.96 3.60 25.42 43.01 9 130.87 5.96 0.5 0.75 27.36 5.90 18.40 3.60 29.65 19.22 22.20 4.43 25.29 12.57 17.59 4.71 37.08 13.09 30.17 3.76 116.64 13.31 42.00 17.24 31.53 0.5 0.5 0.5 25.95 7.00 18.40 3.60 27.60 19.25 22.20 4.43 25.18 12.46 17.59 4.71 36.78 13.07 30.17 3.76 118.28 13.38 130.87 9.74 41.15 17.33 31.53 5.96 11 1.25 0.5 0.75 18.40 18.62 22.20 4.43 12.43 17.59 13.57 30.17 3.76 117.27 13.09 130.87 9.74 41.22 16.97 31.53 5.96 26.29 6.80 3.60 26.48 25.39 4.71 36.11 0.25 0.25 0.25 25.16 7.50 18.40 3.60 25.14 18.38 22.20 4.43 24.96 12.73 17.59 4.71 35.61 13.80 30.17 3.76 116.33 12.99 130.87 9.74 39.87 18.06 31.53 5.96 5 3 19.84 22.20 130.87 31.53 5.96 25.63 7.60 18.40 3.60 27.73 4.43 25.04 12.64 17.59 4.71 35.74 13.68 30.17 3.76 117.75 13.66 40.47 18.03 0.1 0.1 0.1 19.73 22.20 12.96 17.59 13.68 30.17 130.87 31.53 5.96 24.13 9.00 18.40 3.60 26.39 4.43 24.62 4.71 35.48 3.76 116.89 13.55 39.01 19.40 15 0.1 0.01 0.01 22.03 12.00 18.40 3.60 25.09 19.60 22.20 4.43 23.97 19.50 17.59 4.71 35.15 13.74 30.17 3.76 126.30 15.55 130.87 9.74 37.25 21.11 31.53 5.96 0.01 3 3 21.69 11.50 18.40 19.11 22.20 4.43 13.69 17.59 4.71 13.67 30.17 3.76 13.04 130.87 9.74 20.82 31.53 5.96 3.60 25.67 23.79 35.00 126.74 36.95 17 0.01 5 5 11.30 18.40 26.79 19.09 22.20 4.43 13.64 17.59 4.71 35.24 13.69 30.17 3.76 117.58 13.14 130.87 36.62 20.58 31.53 5.96 21.04 3.60 23.63 9 9 130.87 5.96 0.01 20.73 11.40 18.40 3.60 28.81 20.38 22.20 4.43 23.74 13.57 17.59 4.71 35.36 13.62 30.17 3.76 118.86 13.90 36.58 20.28 31.53 17 0.01 10.90 18.40 21.75 22.20 17.59 13.96 30.17 3.76 119.84 14.64 130.87 31.53 5.96 21.03 3.60 30.90 4.43 23.66 13.49 4.71 35.78 31.23 24.96 5 3 0.01 21.45 22.20 13.48 17.59 13.86 30.17 3.76 130.87 31.53 5.96 20.80 11.00 18.40 3.60 31.64 4.43 23.50 4.71 35.77 120.22 14.38 31.15 24.33 5 0.25 5 20.93 10.70 18.40 3.60 32.39 21.21 22.20 4.43 23.35 13.45 17.59 4.71 35.85 13.78 30.17 3.76 120.79 14.41 130.87 31.34 23.77 31.53 5.96 130.87 31.53 5.96 0.01 10.88 18.40 3.60 31.67 20.99 22.20 4.43 23.18 13.47 17.59 4.71 35.72 13.75 30.17 3.76 120.64 28.21 31.25 23.23

13.39 Fuente: Elaboración Propia

23.17

23

0.01

20.09

10.78

18.40

3.60

30.82

20.92

22.20

4.43

17.59

4.71

35.74

13.67

3.76

120.35 | 13.91

130.87

31.19

22.72 31.53

30.17

De la Tabla 10 se puede visualizar que la media muestral del programa Vissim se acerca más a la obtenida en campo, por ello se eligieron las iteraciones 15 y 16. Cualquiera de estos dos intentos podría tener los parámetros que hacen que el modelado se asemeje al tráfico de la situación real. A pesar de ello, se debe verificar mediante la estadística inferencial con un nivel de confianza del 95% y un margen de error permitido.

A modo de verificación si estadísticamente existe diferencia significativa o no, de la media de colas obtenidas en campo y Vissim, se validará con la prueba de la hipótesis nula. Debido a las condiciones que presenta la variable cuantitativa, se hará uso del intervalo de confianza para la diferencia entre la media poblacional de dos distribuciones normales con desviación estándar poblacional desconocida, definiendo las zonas de aceptación o de rechazo de la hipótesis nula (H₂).

Intervalo de confianza para μ con σ^2 desconocida

$$\begin{aligned} (\overline{X_1} - \overline{X_2}) - t_{a/2, n_1 + n_2 - 2} \times S_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}} &\leq u_1 - u_2 \\ &\leq (\overline{X_1} - \overline{X_2}) + t_{a/2, n_1 + n_2 - 2} \times S_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}} \end{aligned}$$

Donde:

$$S_p^2 = \frac{(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2}{n_1 + n_2 - 2}$$

Nivel de confianza (1- a): 95%

Gdl:
$$n_1 + n_2 - 2$$

M.E (Margen de error) =
$$t_{a/2,n_1+n_2-2} \times S_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}$$

- $\overline{X_1}$: Media muestral de campo.
- $\overline{X_2}$: Media muestral de Vissim.
- n₁: Cantidad de datos considerados para la muestra de campo.

- n₂: Cantidad de datos considerados para la muestra de Vissim.
- s_1 : Deviación estándar muestral de campo.
- s_2 : Desviación estándar muestral de Vissim.
- Gdl: Grados de libertad.
- $t_{a/2,n_1+n_2-2}$: Valor obtenido mediante la distribución T-student, grados de libertad y nivel de confianza.

Hipótesis nula (H_a): Si $\mu_1 = \mu_2$

- Valores críticos (t_c): Tabla t- Student
- Valores de prueba (t_p) : $\frac{\overline{(X_1}-\overline{X_2})-(u_1-u_2)}{s_p\sqrt{\frac{1}{n_1}+\frac{1}{n_2}}}$

Opción 1: Iteración 15 (ax=0.1, bxadd=0.01, bxmult=0.01)

Abajo presentamos los resultados del análisis de la hipótesis nula de la diferencia de medias, para todos los accesos de la intersección en estudio.

Tabla 11. Resultados de análisis de La Hipotesis Nula- Iteración 15

JR. CRESPO CASTILLO (N-S)							
N ₂ =	15	N1 =	30				
$S_2 =$	12.00	$S_1 =$	3.60				
X2 =	22.03	X1=	18.40				
M.E =	7.00	N1+N2-2	43.00				
G.L. =	14	a/2 =	0.025				
a/2 =	0.025	ta/2 =	2.017				
ta/2 =	2.145	X1-X2 =	-3.63				
		$Sp^2 =$	55.624411				
Nmín =	14	L.I. =	-8.3897				
		L.S. =	1.1230				

	MALEC	ON (O-E)
$N_2 =$	15	N1 =	30
$S_2 =$	19.50	$S_1 =$	4.71
X2 =	23.97	X1=	17.59
M.E =	11.00	N1+N2-2	43.00
G.L. =	14	a/2 =	0.025
a/2 =	0.025	ta/2 =	2.017
ta/2 =	2.145	X1-X2 =	-6.38
		Sp^2 =	138.77458
Nmín =	14.4563	L.I. =	-13.8927
		L.S. =	1.1327

MALECON (E-O)								
$N_2 =$	15	N1 =	30					
$S_2 =$	19.60	$S_1 =$	4.43					
X2 =	25.09	X1=	22.20					
M.E =	11.00	N1+N2-2	43.00					
G.L. =	14	a/2 =	0.025					
a/2 =	0.025	ta/2 =	2.017					
ta/2 =	2.145	X1-X2 =	-2.89					
_		$Sp^2 =$	138.31116					
Nmín =	14.605	L.I. =	-10.3901					
		L.S. =	4.6101					

PTE. BURGOS (N-S)								
$N_2 =$	15	N1 =	30					
$S_2 =$	13.74	$S_1 =$	3.76					
X2 =	35.15	X1=	30.17					
M.E =	8.00	N1+N2-2	43.00					
G.L. =	14	a/2 =	0.025					
a/2 =	0.025	ta/2 =	2.017					
ta/2 =	2.145	X1-X2 =	-4.98					
		$Sp^2 =$	71.00449					
Nmín =	13.5696	L.I. =	-10.3572					
		L.S. =	0.3905					

CARRETERA CENTRAL (E-O)				
$N_2 =$	15	N1 =	30	
$S_2 =$	15.55	$S_1 =$	9.74	
X2 =	126.30	X1=	130.87	
M.E =	9.00	N1+N2-2	43.00	
G.L. =	14	a/2 =	0.025	
a/2 =	0.025	ta/2 =	2.017	
ta/2 =	2.145	X1-X2 =	4.57	
_		$Sp^2 =$	142.7605	
Nmín =	13.7325	L.I. =	-3.0532	
		L.S. =	12.1865	

CARRETERA CENTRAL (O-E)				
$N_2 =$	15	N1 =	30	
$S_2 =$	21.11	$S_1 =$	5.96	
X2 =	37.25	X1=	31.53	
M.E =	12.00	N1+N2-2	43.00	
G.L. =	14	a/2 =	0.025	
a/2 =	0.025	ta/2 =	2.017	
ta/2 =	2.145	X1-X2 =	-5.72	
_		$Sp^2 =$	169.07712	
Nmín =	14.236	L.I. =	-14.0091	
		L.S. =	2.5758	

Conclusión: El número mínimo de corridas (N.min) en los 6 accesos es menor al número de datos considerados para la muestra de Vissim (N_2) ; por ello 15 corridas son más que suficientes.

Las medias de longitud de cola de campo y Vissim, tienen diferencia significativa, ya que el intervalo de confianza contiene el valor de cero, por ello se concluye que los resultados de la muestra no permiten rechazar la hipótesis nula (H_a)

Opción 2: Iteración 16 (ax =0.01, bxadd =3, bxmult=3)

En la Tabla 12 se muestra los resultados obtenidos para los parámetros de esta iteración.

Tabla 12. Resultados de análisis de La Hipotesis Nula – Iteración 16

JR. CRESPO CASTILLO (N-S)				
N ₂ =	15	N1 =	30	
$S_2 =$	11.50	$S_1 =$	3.60	
X2 =	21.69	X1=	18.40	
M.E =	6.37	N1+N2-2	43.00	
G.L. =	14	a/2 =	0.025	
a/2 =	0.025	ta/2 =	2.017	
ta/2 =	2.145	X1-X2 =	-3.29	
		$Sp^2 =$	51.798829	
Nmín =	15	L.I. =	-7.8832	
		L.S. =	1.2965	

	MALEC	ON (E-O)
N ₂ =	15	N1 =	30
$S_2 =$	19.11	$S_1 =$	4.43
X2 =	25.67	X1=	22.20
M.E =	11.00	N1+N2-2	43.00
G.L. =	14	a/2 =	0.025
a/2 =	0.025	ta/2 =	2.017
ta/2 =	2.145	X1-X2 =	-3.47
		$Sp^2 =$	132.13557
Nmín =	13.8838	L.I. =	-10.8008
		L.S. =	3.8608

	MALEC	CON (O-E))	1	PTE. BUI	RGOS
$N_2 =$	15	N1 =	30	$N_2 =$	15	N1 =
$S_2 =$	13.69	$S_1 =$	4.71	$S_2 =$	13.67	$S_1 =$
X2 =	23.79	X1=	17.59	X2 =	35.00	X1=
M.E =	8.00	N1+N2-2	43.00	M.E =	8.00	N1+
G.L. =	14	a/2 =	0.025	G.L. =	14	a/2 =
a/2 =		ta/2 =	2.017	a/2 =		ta/2
ta/2 =	2.145	X1-X2 =	-6.20	ta/2 =	2.145	X1-X
_			75.991451	_		Sp^2
Nmín =	13.471	L.I. =	-11.7593	Nmín =	13.4317	L.I. :
		L.S. =	-0.6407			L.S.
CARR	ETERA	CENTRA	L (E-O)	CARI	RETERA	CEN

CARRETERA CENTRAL (E-O)					
$N_2 =$	15	N1 =	30		
$S_2 =$	13.04	$S_1 =$	9.74		
X2 =	126.74	X1=	130.87		
M.E =	7.22	N1+N2-2	43.00		
G.L. =	14	a/2 =	0.025		
a/2 =	0.025	ta/2 =	2.017		
ta/2 =	2.145	X1-X2 =	4.13		
		$Sp^2 =$	119.39649		
Nmín =	15	L.I. =	-2.8418		
		L.S. =	11.0951		

CARRETERA CENTRAL (O-E)					
N ₂ =	15	N1 =	30		
$S_2 =$	20.82	$S_1 =$	5.96		
X2 =	36.95	X1=	31.53		
M.E =	12.00	N1+N2-2	43.00		
G.L. =	14	a/2 =	0.025		
a/2 =	0.025	ta/2 =	2.017		
ta/2 =	2.145	X1-X2 =	-5.42		
		$Sp^2 =$	165.11815		
Nmín =	13.8475	L.I. =	-13.6115		
		L.S. =	2.7781		

(N-S)

30 3.76 30.17 43.00 0.025 2.017 -4.83 70.379797 -10.1835 0.5168

Fuente: Elaboración Propia

Conclusión: El número mínimo de corridas (Nmin) en los 6 accesos no es menor al número de datos considerados para la muestra de Vissim (N_2); por ello 15 corridas no son suficientes.

Las medias de longitud de cola de campo y Vissim, no son significativas, ya que el intervalo de confianza no contiene el valor de cero, por ello se concluye que los resultados de la muestra permiten rechazar la hipótesis nula (H_a)

Por lo tanto, la iteración 15 cumple con los estándares establecidos, de ello se puede decir que el modelo queda calibrado con los parámetros correspondientes a esta iteración. A modo de corroboración, se presenta los gráficos de la prueba de Hipótesis nula para cada acceso, con el programa estadístico Winstats.

Figura 27. Jr. Crespo Castillo

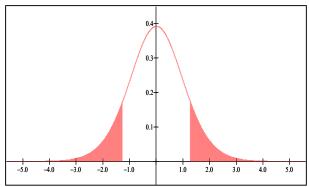
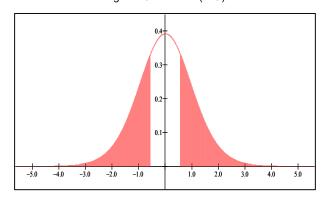
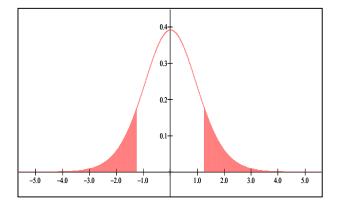




Figura 28. Malecon (E-O)

Fuente: Elaboración Propia

Figura 29. Malecón (O-E)

Fuente: Elaboración Propia

Figura 30. Puente Burgos (N-S)

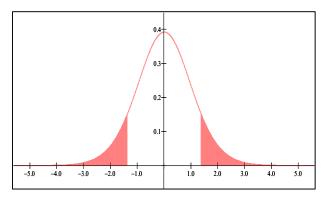
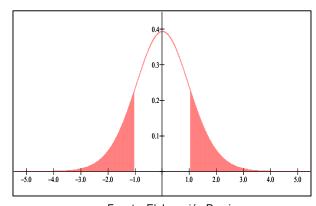



Figura 31 Carretera Central (E-O)

Fuente: Elaboración Propia Figura 32. Carretera Central (O-E)

0.4 0.3 0.2 0.1 -5.0 -4.0 -3.0 -2.0 -1.0 1.0 2.0 3.0 4.0 5.0

Fuente: Elaboración Propia

4.1.2.4. Validación del modelo

Finalmente, para cerrar la etapa de la construcción del modelo, se debe validar o confirmar los resultados del parámetro de eficiencia seleccionado en el ítem anterior (longitud de cola); con la finalidad de que el modelo de la simulación tenga un comportamiento similar a los datos de campo (realidad).

Asimismo, una vez calibrado y validado el modelo de microsimulación de la zona de estudio, se pasará a evaluar la condición del escenario actual y la propuesta de mejora, con un volumen de transito proyectado a 10 años.

4.1.3 Evaluación de la microsimulación

el tráfico en el área de estudio, para dos escenarios proyectados en 10 años

4.1.3.1. Escenario actual

Para el desarrollo del escenario se tomó como base el estado actual del área de estudio; solo cabe destacar la nueva composición vehicular estimada para el año 2029.

A continuación, en la Figura 33 se muestra los resultados obtenidos del sistema de los niveles de servicio en los accesos al Puente Señor de Burgos en los distritos de Huánuco y Amarilis.

View Lists Base Data Traffic Signal Control Simulation Evaluation Presentation Scripts Help ☐ 😭 ↓ ▶ ▶ ■ ↓ Driving Behaviors - 🎤 無 🚳 💍 🗟 🖹 👑 ⊄ 🔣 🕘 🔍 ← → 🖐 🍻 🛪 📾 🛱 🏖 Select layout... Desired Spee Reduced Spe Priority Rules Stop Signs Signal Heads Vehicle Route Public Transp Public Transp Data Collecti Vehicle Travel Queue Count Pavement Ma

Figura 33. Niveles de servicio en los accesos a Puente Señor de Burgos, de la situación actual proyectado 10 años

Fuente: Elaboración Propia

4.1.3.2. Escenario con propuesta de mejora

Cabe mencionar que en esta faceta de microsimulación, fue realizada en base a la propuesta planteada, como se puede visualizar en la sección ANEXOS N° 4; con una composición vehicular estimada al 2029.

A continuación, en la Figura 34 se muestra los resultados obtenidos de los niveles de servicio en el área de estudio para el nuevo sistema de propuesto.

ile Edit View Lists Base Data Traffic Signal Control 000.50 🛕 🏠 🔎 🕨 🔳 🐧 Network Edito - 🎤 無 🚳 () 🐿 🗈 📳 😃 🔾 🗲 ⇒ [👑 🍌 🛪 Desired Speed Decisi OpenStreetMap contributora Reduced Speed Area Priority Rules Stop Signs Signal Heads Vehicle Inputs Vehicle Routes Parking Lots Public Transport Stop Public Transport Line Data Collection Point Vehicle Travel Times Sections 1 Pavement Markings

Figura 34. Niveles de servicio en los accesos a Puente Señor de Burgos, de la situación actual con mejoras incorporadas proyectado a 10 años

Fuente: Elaboración Propia

4.2 Contrastación de hipótesis y prueba de hipótesis

Mediante el desarrollo de la presente investigación y de la evaluación de las variables; se ha podido demostrar adecuadamente si la hipótesis es válida o invalida.

Hipótesis: Mediante mejoras al diseño geométrico, adecuada señalización, se podrá reducir la congestión vehicular en los accesos al Puente Señor de Burgos.

Con respecto a la hipótesis planteada en la presente investigación, es posible verificar que con lo planteado anteriormente se puede reducir el nivel de servicio, por lo tanto, se puede afirmar que es válida la hipótesis.

CAPÍTULO V

5 DISCUSION DE RESULTADOS

5.1 Contrastación de los resultados del trabajo de investigación

Longitud de cola

Los resultados obtenidos de la longitud de cola para cada acceso de las intersecciones 1 y 2 se muestran en las Tablas 13 y 14 y Figuras 35 y 36 respectivamente para un escenario proyectado al 2029 situación actual con y sin propuesta de mejora; de la comparación de estos se concluye que mejoró con las propuestas implementadas a la situación actual. Por ejemplo, en el acceso a la Intersección 2 de la Carretera Central (O-E) se puede apreciar la máxima longitud de cola, siendo 231.28 m y ahora 181.43 m.

Tabla 13. Longitudes de cola de la intersección 1 (situación actual con y sin propuesta de mejora)

INTERSECCION 1	SITUACIÓN ACTUAL	PROPUESTA DE MEJORA	
Acceso	Longitud de Cola (m)	Longitud de Cola (m)	RESULTADO
JR. CRESPO CASTILLO (N-S)	64.04	26.12	me jo ro
PTE. BURGOS (S-N)	10.87	25.46	empeoro
MALECON (E-O)	114.23	104.28	me joro
MALECON (O-E)	87.33	100.51	empeoro
RESULTADO	78.14	64.09	MEJORO

Fuente: Elaboración Propia

Figura 35. Longitudes de colas de la Interseccion 1

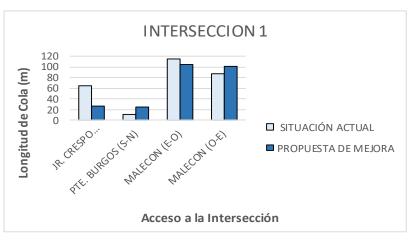
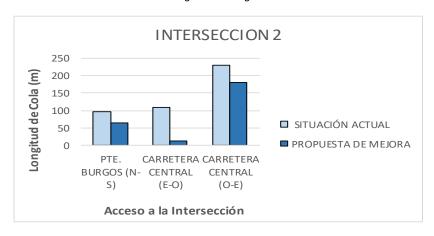



Tabla 14. Longitudes de cola de la interseccion 2 (situacion actual con y sin propuesta de mejora)

INTERSECCION 2	SITUACIÓN ACTUAL	PROPUESTA DE MEJORA	
Acceso	Longitud de Cola (m)	Longitud de Cola (m)	RESULTADO
PTE. BURGOS (N-S)	96.18	63.85	mejoro
CARRETERA CENTRAL (E-O)	108.08	13.91	mejoro
CARRETERA CENTRAL (O-E)	231.28	181.43	mejoro
RESULTADO	127.96	70.39	MEJORO

Fuente: Elaboración Propia

Figura 36. Longitudes de colas de la Interseccion 2

Fuente: Elaboración Propia

Demora de viaje

En las Tablas 15 y 16 y Figuras 37 y 38 se presentan los resultados de la demora de viaje por acceso de las intersecciones 1 y 2, que se obtuvieron a partir del programa Vissim 9.0. Para la situación actual se tiene una demora promedio de 69.30 Seg/Veh y 114.34 Seg/Veh respectivamente, valor que puede considerarse elevado; en cambio para el escenario con propuesta de mejora se redujo a un menor tiempo de 50.55 Seg/Veh y 35.70 Seg/Veh respectivamente.

Tabla 15. Tiempo de demora de la interseccion 1 (situacion actual con y sin propuesta de mejora)

INTERSECCION 1	SITUACIÓN ACTUAL	PROPUESTA DE MEJORA	
Acceso	Demora de control (s/veh)	Demora de control (s/veh)	RESULTADO
JR. CRESPO CASTILLO (N-S)	174.05	37.97	mejoro
PTE. BURGOS (S-N)	7.02	15.2	empeoro
MALECON (E-O)	243.87	96	mejoro
MALECON (O-E)	91.34	86.95	mejoro
RESULTADO	69.30	50.55	MEJORO

INTERSECCION 1

Figura 37. Tiempo de demora de la Interseccion 1

300 250 200 Demora de control (s/veh) 150 100 50 ■ SITUACIÓN ACTUAL ■ PROPUESTA DE MEJORA Acceso a la Intersección

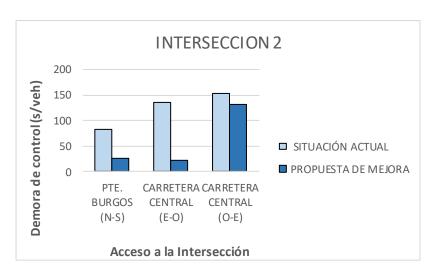

Fuente: Elaboración Propia

Tabla 16. Tiempo de demora de la interseccion 2 (situacion actual con y sin propuesta de mejora)

INTERSECCION 2	SITUACIÓN ACTUAL	PROPUESTA DE MEJORA	
Acceso	Demora de control (s/veh)	Demora de control (s/veh)	RESULTADO
PTE. BURGOS (N-S)	83.47	26.37	mejoro
CARRETERA CENTRAL (E-O)	135.105	22.76	mejoro
CARRETERA CENTRAL (O-E)	153.16	132.05	mejoro
RESULTADO	114.34	35.70	MEJORO

Fuente: Elaboración Propia

Figura 38. Tiempo de demora de la Interseccion 2

Nivel de servicio

En este caso el análisis está relacionado con la demora de viaje ya que ayuda a determinar el nivel de servicio de la intersección, en las Tablas 17 y 18 se muestra la comparación de estos resultados de las intersecciones entre la situación actual con y sin propuesta de mejora proyectado al 2024. De ello se puede concluir que el nivel de servicio del sistema de las intersecciones 1 y 2 se mejoró, ya que se redujo de E a D y de F a D respectivamente, asimismo la variación del tiempo de demora en un 27.06% y 68.78%.

Tabla 17. Niveles de servicio de la interseccion 1 (situacion actual con y sin propuesta de mejora)

INTERSECCION 1	SITUACIÓ	ON ACTUAL	PROPUESTA	DE MEJORA		
Acceso	Demora de control (s/veh)	Nivel Servicio	Demora de control (s/veh)	Nivel Servicio	RESULTADO	Variacion
JR. CRESPO CASTILLO (N-S)	174.05	F	37.97	D	mejoro	78.18%
PTE. BURGOS (S-N)	7.02	A	15.2	В	empeoro	-116.52%
MALECON (E-O)	243.87	F	96	F	mejoro	60.63%
MALECON (O-E)	91.34	F	86.95	F	mejoro	4.81%
RESULTADO	69.30	Е	50.55	D	MEJORO	27.06%

Fuente: Elaboración Propia

Tabla 18. Niveles de servicio de la interseccion 2 (situacion actual con y sin propuesta de mejora)

INTERSECCION 2	SITUACIÓ	ÓN ACTUAL	PROPUESTA	DE MEJORA		
Acceso	Demora de control (s/veh)	Nivel Servicio	Demora de control (s/veh)	Nivel Servicio	RESULTADO	Variacion
PTE. BURGOS (N-S)	83.47	F	26.37	С	mejoro	68.41%
CARRETERA CENTRAL (E-O)	135.105	F	22.76	С	mejoro	83.15%
CARRETERA CENTRAL (O-E)	153.16	F	132.05	F	mejoro	13.78%
RESULTADO	114.34	F	35.70	D	MEJORO	68.78%

CONCLUSIONES

Del análisis realizado a la situación actual en la mejora del diseño geométrico y adecuada señalización de los accesos al Puente Señor de Burgos, la presente tesis va a mejorar considerablemente los niveles de servicio de la intersección y por ende reducir la congestión vehicular. Respecto a la mejora del diseño geométrico, en la intersección 1 se rediseño e incorporo las islas y en la intersección 2 se proyectó un deprimido vial que abarca el tramo transversal de la carretera Central.

La modelación de tráfico vehicular fue desarrollada en el programa Vissim 9.0, para que los resultados sean lo más real posible, se llevó a cabo una calibración al programa para que sea aplicable a la investigación. Los valores de los parámetros Wiedemann 74 obtenidos para la calibración del modelo son los siguientes: ax= 0.1, bxadd= 0.01 y bxmult=0.01.

La investigación se basó en la evaluación de los niveles de servicio de dos escenarios proyectados en un periodo de diseño de 10 años desde el año base al 2029, cuya investigación abarca dos intersecciones, la primera está en el Puente Señor de Burgos con el Malecón Daniel Alomia Robles y el Jr. Crespo Castillo y la segunda corresponde al Puente Señor de Burgos con la Carretera Central.

Primer escenario: Corresponde a la situación actual, cuyo resultado obtenido al tiempo de demora en la primera intersección es de 69.30 Seg/Veh y en la segunda es de 114.34 Seg/Veh; valores que corresponden a un nivel de servicio pésimo "E" y "F" respectivamente.

Segundo escenario: Corresponde a la situación actual con todas las mejoras incorporadas, cuya variación del tiempo de demora en cuanto al escenario anterior en la primera intersección es de 27.06%, que es 50.55

Seg/Veh el cual demuestra que el nivel de servicio mejoro a bueno de "E" a "D", como así también en la segunda intersección la variación del tiempo de demora es 68.78%, que es 35.70 Seg/Veh el cual demuestra que paso de un nivel de servicio pésimo a bueno de "F" a "D".

RECOMENDACIONES

En la intersección de la Carretera Central y el Puente Señor de Burgos, actualmente se presenta deficiencias en los giros debido a la ubicación de los grifos grifos Primax y Verde, ya que se encuentran en la misma intersección; por ello se recomienda a la entidad correspondiente reubicar a estos grifos ya mencionados y en el caso específico la de construir un deprimido vial en el tramo transversal de la Carretera Central, que para el caso mejoró considerablemente el nivel de servicio.

Se recomienda el uso del programa Vissim, porque nos permite visualizar en 3 dimensiones el funcionamiento de la viabilidad y analizar con mayor detalle sus elementos de la intersección, obteniendo así un modelado semejante a la realidad debido a su calibración y modelo estocástico, por ende, resultados más confiables a la investigación.

Ante la carencia de datos de volumen de flujo vehicular anual, se recomienda a las autoridades instalar contadores electrónicos de vehículos, para que así se pueda tener información actualizada y pueda desarrollar proyectos sostenibles con el tiempo ya que estas serán las que garanticen el éxito o fracaso.

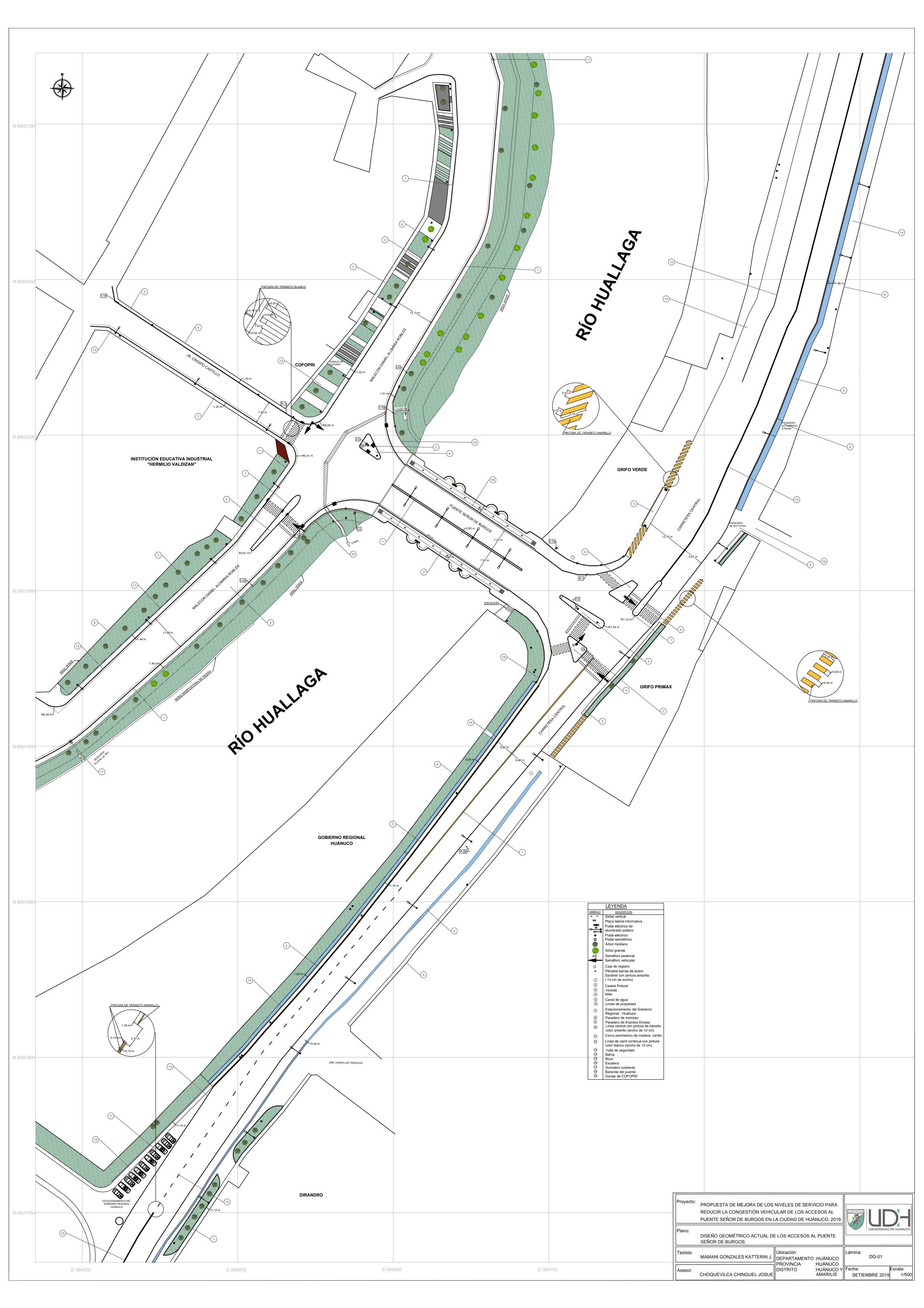
REFERENCIAS BIBLIOGRÁFICAS

- Alcalá Ramos, M. A. (2016). Micro simulación del Tráfico de la Intersección de las Avenidas Bolivar, Córdova y Calle Andalucía empleando el Software Vissim 6. Lima: Pontificia Universidad Católica del Perú.
- Arelia Luna. (11 de Mayo de 2018). Calles de la ciudad de Huánuco convertidas en verdadero 'infierno'. Obtenido de Correo: https://diariocorreo.pe/edicion/huanuco/calles-de-la-ciudad-de-huanuco-convertidas-en-verdadero-infierno-818336/
- Asaithambi, G., Kuttan, M., & Chandra, S. (2016). Pedestrian Road Crossing Behavior Under Mixed Traffic Conditions: A Comparative Study of an Intersection Before and After Implementing Control Measures. suiza: Springer International.
- Benekohal, R. F. (1991). Procedure for validation of Microscopic Traffic Flow Simulation Models. Washinngton: Transportation Research Record 1320.
- Cal y Mayor Reyes Spindola, R., & Cárdenas Grisales, J. (2007). Ingenieria de Transito: Fundamentos y aplicaciones. México: Alfaomega.
- Fellendorf, M., & Vortish, P. (2010). Microscopic Traffic Flow Simulator VISSIM. En J. Barcelo, Fundamentals of traffic Simulation (pág. 459). España: Springer.
- Fernández S, P. (2001). Determinacion del tamaño muestral. Investigacion: Determinacion del tamaño muestral, 6.
- FHWA. (2004). Traffic Analysis Toolbox Volume III: Guidelines for Applying Traffic Mmicrosimulation Modeling Software. Washington: FHWA-HRT-04-040.
- Garcia Rojas, P. M., & Jauregui Huaman, C. S. (2018). Evaluación de soluciones para mejorar el nivel de servicio de tres intersecciones de la Avenida Salaverry,comprendidos entre la Avenida Cádiz y la Avenida Canevaro. Lima: Universidad Peruana de Ciencias Aplicadas (UPC).

- GERENCIA, I. D. (2004). MANUAL DE DISEÑO GEOMETRICO DE VIAS URBANAS 2005-VCHI. PERU: VCHI S.A.
- Gómez Johnson, R. C. (2004). Texto del alumno Ingenieria de Tráfico CIV-326. Cochabamba: Universidad Mayor de San Simon.
- Hernández Sampieri, R., Fernández Collado, C., & Baptista Lucio, P. (2014).

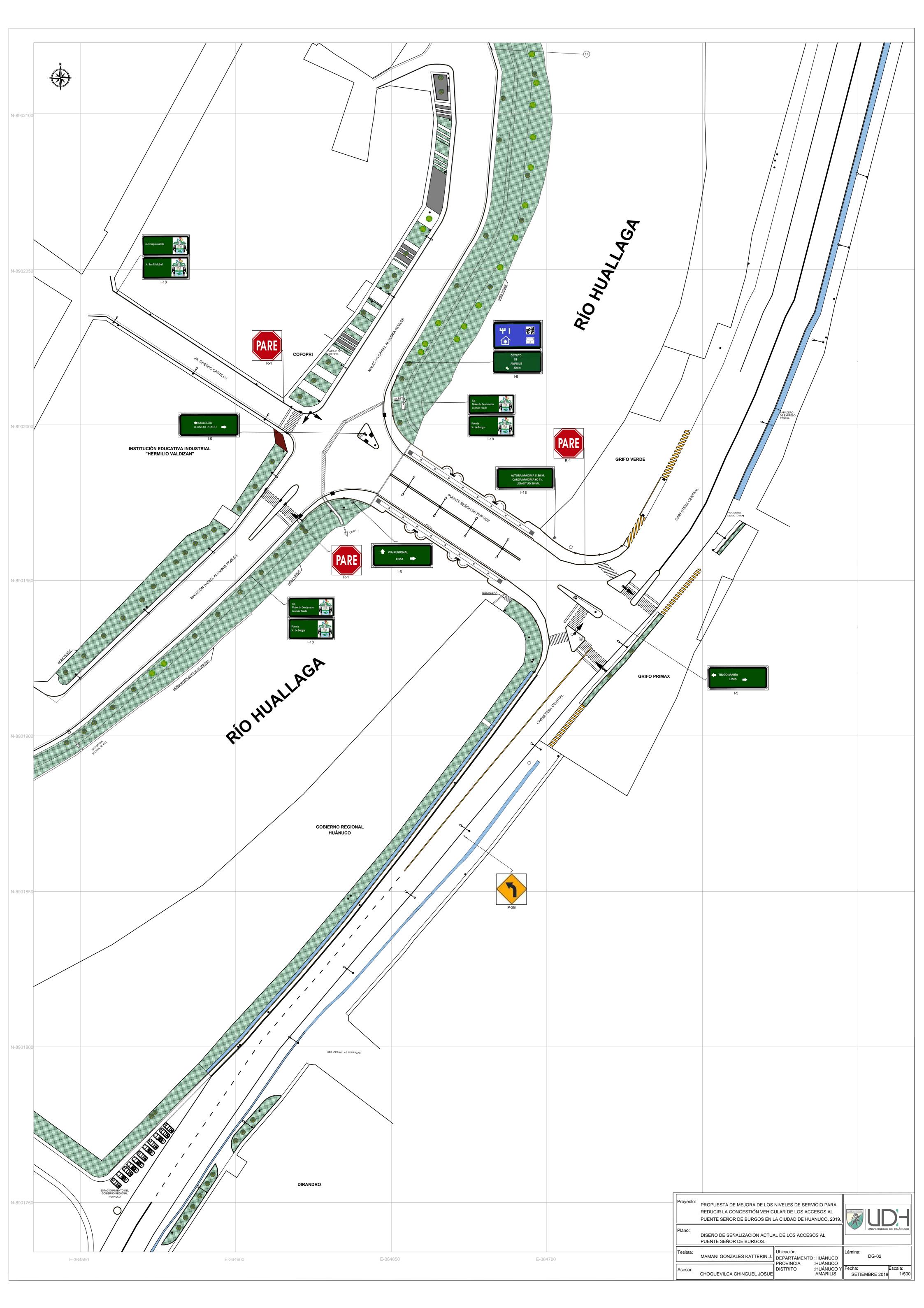
 METODOLOGÍA DE LA INVESTIGACIÓN. MEXICO: MC GRAW-HILL.
- Instituto de la Construccion y Gerencia. (2005). Manual de Diseño Geométrico de Vías Urbanas. Lima: VCHI S.A.
- Ministerio de Transporte y Comunicaciones. (2016). Manual de Dispositivos de Control de Tránsito Automotor para Calles y Carreteras. Perú: MTC.
- Ministerio de Transportes y Comunicaciones. (2013). Diseño Geométrico. Perú: DG.
- Nicholas J., G., & Lester A., H. (2005). Ingeniería de tránsito y Carreteras. México: Thomson.
- ORTÚZAR, J. D. (2002). ¿ES POSIBLE REDUCIR LA CONGESTION VEHICULAR? ARQ, 7.
- PTV GROUP. (2014). PTV Vissim Curso Vissim Básico. Alemania: PTV AG.
- Rojas Arana, E. (2016). Propuesta de Diseño Geometrico en el Ovalo Esteban Pavletich Huánuco. Huánuco.
- Salazar Solano, C. J. (2018). Análisis por Micro Simulación de la Intersección entre la Av. Brasil y el Jr. General Borgoño empleando Vissim 8. Lima.
- Soto Huaman, A. J. (2016). Intervencion vial del puente Esteban Pabletich y sus accesos, para mejorar la transitabilidad en la ciudad de Huanuco 2016. Huanuco: Universidad Nacional Hermilio Valdizan.

ANEXOS

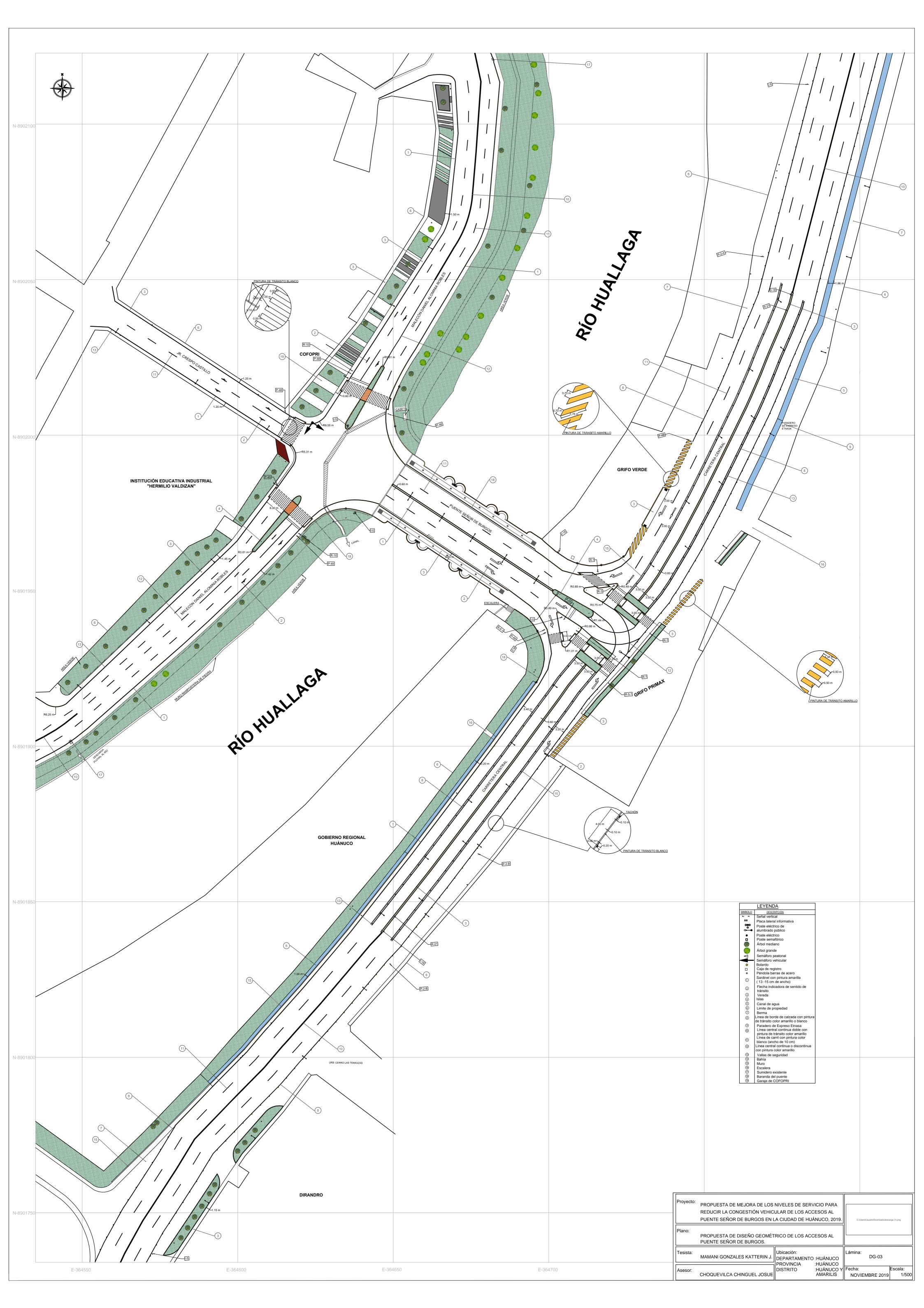

(ANEXO N° 01) MATRIZ DE CONSISTENCIA

"PROPUESTA DE MEJORA DE LOS NIVELES DE SERVICIO PARA REDUCIR LA CONGESTION VEHICULAR DE LOS ACCESOS AL PUENTE SEÑOR DE BURGOS EN LA CIUDAD DE HUÁNUCO, 2019"

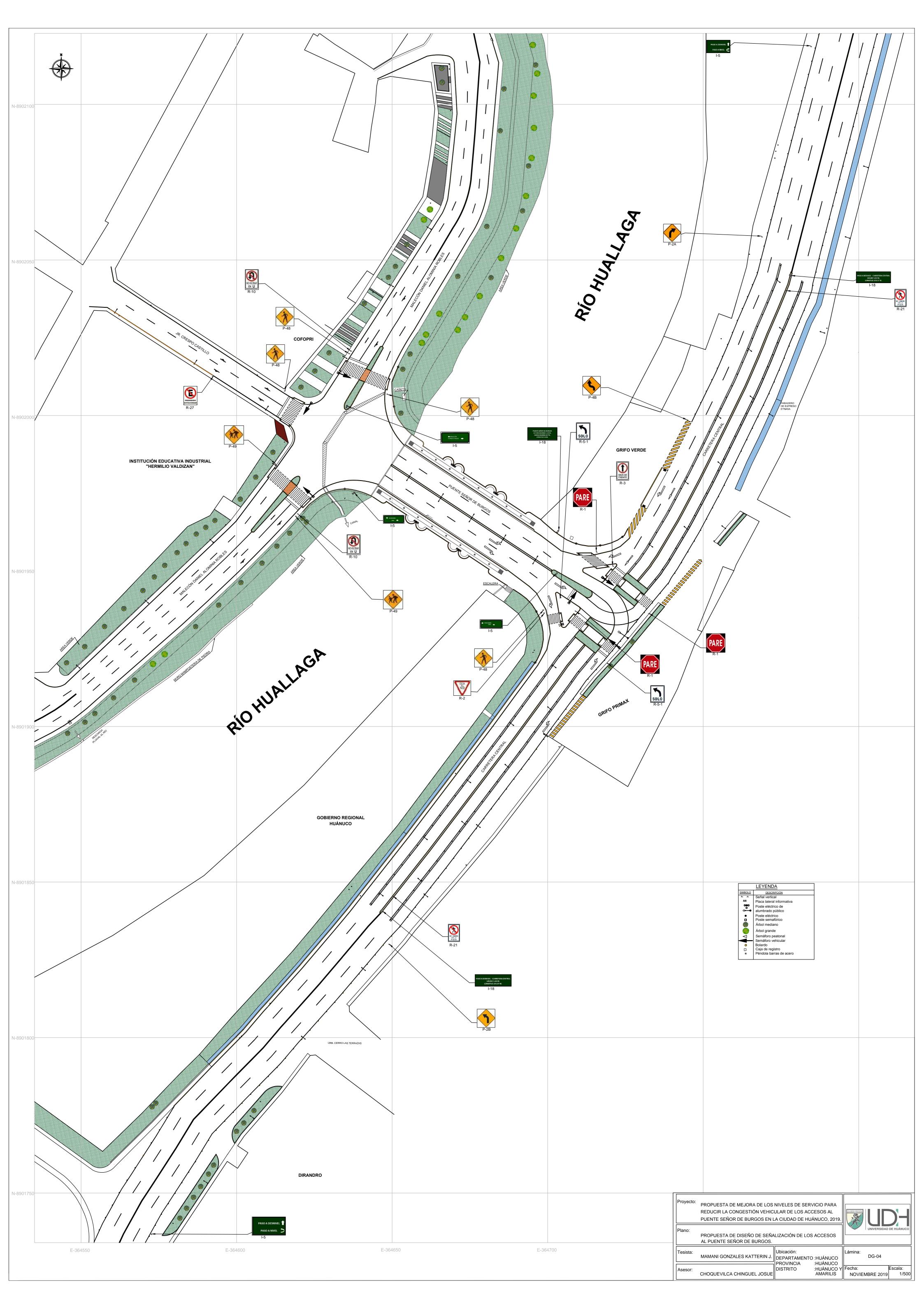
OBJETIVOS	HIPOTESIS	VARIABLES	METODOLOGIA
			Tipo de Investigación
Objetivo General	<u>Hipótesis</u>	<u>Variable</u>	Tomando como referencia a los autores Hernández Sampieri, Fernández Collado, & Baptista
Proponer un diseño geométrico de los	Mediante una	dependiente	Lucio (2014), para el desarrollo de la presente investigación se desarrollara a continuación el
accesos al Puente Señor de Burgos en	propuesta de diseño	Niveles de	enfoque, alcance y diseño de investigación.
la ciudad de Huánuco, que incorpore una	geométrico y	Servicio.	➤ Enfoque de Investigación
adecuada señalización, para mejorar los	adecuada	<u>Variable</u>	La presente investigación reúne las condiciones suficientes para ser catalogado como una
niveles de servicio y reducir la	señalización	independiente	investigación cuantitativa.
congestión vehicular.	semafórica, se podrá	Congestión	> Alcance o Nivel de Investigación
Objetivos Específicos	mejorar los niveles de	vehicular de	Los alcances para la presente investigación cuantitativa se clasificarán en una investigación
Modelar, calibrar y validar el tráfico de	servicio de los	los accesos al	descriptiva y explicativa.
la situación actual, utilizando el	accesos al Puente	Puente Señor	➤ Diseño de la Investigación
programa Vissim 9.0.	Señor de Burgos en la	de Burgos.	El diseño de la investigación a desarrollar es del tipo no experimental.
Simular dos escenarios proyectados	ciudad de Huánuco,		Población y Muestra
en 10 años con y sin propuesta de	para reducir la		➤ Población de Estudio
mejora, utilizando el programa Vissim	congestión vehicular.		La población a estudiar está constituida por todos los vehículos motorizados que pertenecen al
9.0.			parque automotor de los accesos al Puente Señor de Burgos.
Determinar los niveles de servicio de			➤ Tamaño de Muestra
los accesos al Puente Señor de			Para determinar el tamaño de muestra de la presente investigación, se ha considerado el tipo
Burgos para dos escenarios			de muestreo no probabilístico de selección intencional. Se analizará el comportamiento del
proyectados en 10 años, con y sin			tráfico vehicular en hora punta y se trabajará con una estimación de crecimiento del parque
propuesta de mejora.			automotor de un periodo de 10 años, ya que es una propuesta de gran envergadura.
	Dbjetivo General Proponer un diseño geométrico de los accesos al Puente Señor de Burgos en la ciudad de Huánuco, que incorpore una adecuada señalización, para mejorar los niveles de servicio y reducir la congestión vehicular. Objetivos Específicos Modelar, calibrar y validar el tráfico de la situación actual, utilizando el programa Vissim 9.0. Simular dos escenarios proyectados en 10 años con y sin propuesta de mejora, utilizando el programa Vissim 9.0. Determinar los niveles de servicio de los accesos al Puente Señor de Burgos para dos escenarios proyectados en 10 años, con y sin	Objetivo General Proponer un diseño geométrico de los accesos al Puente Señor de Burgos en la ciudad de Huánuco, que incorpore una adecuada señalización, para mejorar los niveles de servicio y reducir la congestión vehicular. Objetivos Específicos Mediante una propuesta de diseño geométrico y adecuada señalización, para mejorar los niveles de señalización semafórica, se podrá mejorar los niveles de servicio de los accesos al Puente Señor de Burgos en la ciudad de Huánuco, para reducir la congestión vehicular. Dieterminar los niveles de servicio de los accesos al Puente Señor de Burgos para dos escenarios proyectados en 10 años, con y sin propuesta de los accesos al Puente Señor de Burgos para dos escenarios proyectados en 10 años, con y sin	Objetivo GeneralHipótesisVariable dependienteProponer un diseño geométrico de los accesos al Puente Señor de Burgos en la ciudad de Huánuco, que incorpore una adecuada señalización, para mejorar los niveles de servicio y reducir la congestión vehicular.geométrico y adecuadaNiveles de Servicio.Objetivos Específicosseñalización semafórica, se podrá mejorar los niveles de servicio de los accesos al PuenteCongestión vehicular de• Modelar, calibrar y validar el tráfico de la situación actual, utilizando el programa Vissim 9.0.señor de Burgos en la ciudad de Huánuco, para reducir la congestión vehicular.Puente Señor de Burgos.• Determinar los niveles de servicio de los accesos al Puentecongestión vehicular.9.0.Determinar los niveles de servicio de los accesos al Puente Señor de Burgos para dos escenarios proyectados en 10 años, con y sin


(ANEXO N° 02)

PLANO DE: DISEÑO GEOMÉTRICO ACTUAL DE LOS ACCESOS AL PUENTE SEÑOR DE BURGOS.


(ANEXO N° 03)

PLANO DE: DISEÑO DE SEÑALIZACION ACTUAL DE LOS ACCESOS AL PUENTE SEÑOR DE BURGOS.


(ANEXO N° 04)

PLANO DE: PROPUESTA DE DISEÑO DE GEOMETRICO DE LOS ACCESOS AL PUENTE SEÑOR DE BURGOS.

(ANEXO N° 05)

PLANO DE: PROPUESTA DE DISEÑO DE SEÑALIZACION DE LOS ACCESOS AL PUENTE SEÑOR DE BURGOS.

(ANEXO N° 06) FORMATO DE CONTEO VEHICULAR

	FORMATO DE CONTEO VEHICULAR					IN'	TERSECCION: 0	CARRETE	RA CENTRAL - P	UENTE SEÑOR DE	BURGOS						
AFORADOR:	-	ESTACION:	E-5		FECHA	VIERNES 14 DE JUNIO D	EL 2019			H. INICIO:		06:00 a.m.	DIST	RITO:	AMARILIS		
	-	ACCESO:	N-S		TURNO	: MAÑANA				H. FINAL:		09:00 a.m.	5.01				
HORA	MOTO LINEAL	MC	OTO TAXI	I I	AUTO		9	MICRO		1 1	BU:	s	T A	CAMION			P
06:00 06:15 A.M.					' '			•				· H				•	
06:15 06:30 A.M.																	
06:30 06:45 A.M.																	
06:45 07:00 A.M.																	
07:00 07:15 A.M.																	
07:15 07:30 A.M.																	
07:30 07:45 A.M.																	
07:45 08:00 A.M.																	
08:00 08:15 A.M.													ПГ				
08:15 08:30 A.M.																	
08:30 08:45 A.M.													ПГ				
08:45 09:00 A.M.																	

(ANEXO N° 07) FORMATO DE CONTEO PEATONAL

FO	RMATO DE	CONTEO	PEATONAL				IN	TERSE	CCION: CARRETE	RA CENT	ΓRAL - PL	JENTI	E SEÑOR DE BU	JRGOS			
	AFOR	ADOR:					ESTACION:	E3		FEC	CHA:	IERNES	21 DE JUNIO DEL 2019	н.	INICIO:	17:45	
							ACCESO:	EO,OE,SI	N,NS	TUI	RNO:		NOCHE	Н.	FINAL:	18:45	
	HORA		EO-	P10 (VIENEN)		C	E-P9	(VAN)		SN-P	15 (V	VIENEN)	1	NS-P16	(VAN)	
			HOMBRE	EO-P10 (VIENEN) HOMBRE MUJER			HOMBRE	3	MUJER		HOMBRE		MUJER	номв	RE	MUJER	
17:45	18:00	РМ		EO-P10 (VIENEN)													
				EO-P10 (VIENEN)													
18:00	18:15	PM		EO-P10 (VIENEN)													
18:15	18:30	РМ															
18:30	18:45	PM															

(ANEXO N° 08) HOJA DE AFORO VEHICULAR DE LA INTERSECCION (MIERCOLES 12 DE JUNIO DEL 2019)

AFORO VEHICULAR(SENTIDO:S-N) **UBICACION: ACCESOS AL PUENTE SEÑOR DE BURGOS FECHA: MIERCOLES 12 DE JUNIO DEL 2019** AUTO BUS MICRO CAMION MOTOTAXI MOTO LINEAL TOTAL POR MOVIMIENTO **HORAS DE** TOTAL SUMA TOTAL FHP 103 1/4 HORA HORA CONTROL 101 102 103 100 101 102 101 102 103 100 101 HORA 100 101 102 06:00 06:1 Ω Ω Ω O O O O O O Ω O O 06:15 06:3 06:30 06:4 O О O О O O O O O O O O O О О O 06:45 07:0 O O O O O 07:00 07:1 Ω Ω Ω Ω O O 0.614 О 07:15 07:3 O O O О 0.728 07:30 07:4 O O 0.81 Ω О O О O 07:45 08:0 0.86 O 08:00 08:1 O О O 08:15 08:3 О O О O 08:30 08:4 O О O О О O O O O O O O O O 08:45 09:0 Ω О O Ω O Ω 0 20 C C 12:00 12:1 12:15 12:3 O O O Ω О O O O O O O 12:30 12:4 O О O О О O Ω 12:45 13:0 O 13:00 13:15 О О О Ω О Ω О Ω O 0.837 O 13:15 13:30 0.852 13:30 13:45 O Ω 13:45 14:0 O О O 0.886 14:00 14:1 O O O O 0.926 O О O О O O O O 14:15 14:3 Ω O O О O O 14:30 14:4 О О Ω O 14:45 15:0 O Ω O Ο O O Ο O O O C C C C 17:00 17:1 О O O О O Ω 17:15 17:3 О O О O 17:30 17:4 О 17:45 18:0 О О O 0.76 O 18:00 18:1 O O 0.832 O Ω O О Ω 0.904 18:15 18:3 o O 0.935 18:30 18:4 О 18:45 19:0 O O O О O O O 19:00 19:1 O О O О О О O O O O O O О O О O O O О O O O 19:15 19:30 O 19:30 19:4 O O O O O O Ω О O O O O Ω O O O H.P(MAÑANA) 0 263 О О О О 0 177 H.P(TARDE) О О О О 0 218 H.P(NOCHE) Ω О О О О MAÑANA TARDE NOCHE 101 102 101 102 103 Х4 Х4 Х4 F.H.P 0.87 #### 0.85 F.H.P 0.94 #### 0.9 F.H.P 0.95 #### 0.88

																										/F1116		CENT	DO.N	C 1																								
UBICACION: ACC	resor	C AT DIT	ENITE	EÑOD	DE DI	IDCOS																		AFC	JKU V	/EHIC	ULAR(S	SENII	IDO:N	<u>-5)</u>																								
FECHA: MIERCOL					DL DC	MGOS																																																
120111111111111111111111111111111111111																																																						
HORAS DE	_	AUTO			BU	IS	_	٨	MICRO			CAM	ION		М	OTOT/	XI		отом	INEAL			AUT	0			BUS			MIC	RO		C	AMION	v .	N	отот	AXI		MOT	O LINE	FAL	TOTAL	SUP	ACCE	sos	OTAL	T T	OTAL POP	MOVI	MENTO	TOTAL I	POR MO	VIMIENTO
_	_	301 30	2 303	300	301	302	303	300 3	01 30	303	300	301	302	303 3	00 3	01 3	2 30	3 30	301	302	303	30	31		33	30	31 3	33	3 30	31	32	33	30	31 3	2 3:		31	_	33	_	1 3		1/4 HO	RA HO	RA 1/		IORA	HP	300 30	1 302	303	30	31	32 33
06:00 06:15	_	10 0	_	0	0	0	_	0 1	1 0		0	1	0) 1	_	_	1	1	0	_	15	_				0 0	_	0	0	1		3 (0 1	_	28	_	23) 0		_	130		69	31 31			3 30		0	46		i 0
	_	11 0		0	0	0	0	0 0	-	+-	0	0	0	0 0) 2	_	0	0	_	0	_	19	_	_	_	-	0 0	_	0	0	2	_	3 (_	_	38	_	36	_	1 0	_		172	_	87		-		0 36	_	0	64		72 0
06:30 06:45	_	6 0	0	0	0	0	-	0 0		+-	-	2	0		2 3	_		1	1	0	_	26	_	_	_	-	0 0		1	0	_	0	4 (0 3	0	52	_	46	0 8		_		228	_	100	_	-	_	3 40	_	0	91	_	93 0
06:45 07:00	_	18 0		0	0	0	-	0 0	_		_	0	0	_	1 4	_	_	2	_	0	_	_	_	_	_	-	0 1		0	0	1	0	1 (_	_	73	_	109	_	3 0			348	_	_	_	3866	_	9 78	_	0	119	_	42 0
	_	29 0	0	0	0	0	-	2 (_	_	1	-	0	0 1	8 7	_	0	2	_	0	_	_	_	_	0	-	0 0	0	0	0	2	0	3 (0 2	0	103	_	101	0 3		_	_	481	_	_	_	5054	_	31 11	8 0	0	180		52 0
	_	40 1	0	0	0	0	_		0 0	0	0	1	0	_	9 12	_	. 0	4	_	2	_	90	_	76	0	0	0 2	0	2	0	4	0	6 (0 1	0	200	_	250	_	0 0	_	_	1034	_	_	_	7053 C		38 19	1 4	0	398	0 4	03 0
07:30 07:45	8 4	40 0	0	0	0	0	0	0 1	1 0	0	1	2	0	0 2	4 12	20 1	. 0	8	35	0	0	28	0	40	0	0	0 0	0	0	0	1	0	5 (0 7	0	142	0 1	176	0 5	0 0	45	0	744	26	07 232	25	8373 0	0.728	51 19	8 1	0	225	0 2	69 0
E	3 3		0	0	0	0	_	0 1	_	_	0	2	0		5 9	_	_	6	_	1		29	_	30	0	0	0 0	0	0	0	0	0	2 (0 3	0	100	_	86		4 0	_		491	_	_	_	9323 0	_	34 14	5 2	0	165	_	45 0
08:00 08:15	_	35 0	0	0	0	0	_	2 (_	0	0	2	0		4 1			5	_	2		36	_	45	0	0	0 0	0	0	0	1	0	5 (0 7	0	110	_	130	0 5	7 0	_	_	624	_	93 245	_	_		28 17	_	0	208	_	11 0
08:15 08:30	5 1	14 4	0	0	0	0	0	0 2	2 0	0	0	0	0	0 1	3 8	4 2	0	9		1	0	24	0	44	0	0	0 2	0	0	0	3	0	2 (0 5	0	119	0 1	139	0 4	5 0	26	0	557	24:	16 214	46 ′	9171		27 11	4 7	0	190	0 2	19 0
08:30 08:45	7 1	15 0	0	0	0	0	0	0 4	4 0	0	0	2	0	0 9	9 6	7 3	0	5	18	2	0	38	0	47	0	1	0 0	0	0	0	0	0	4 (0 7	0	144	0 1	103	0 4	3 0	33	0	552	22	24 203	33 ′	8879		21 10	5 5	0	230	0 1	90 0
	_	19 4	0	0	0	0	0	1 3	3 0	0	0	1	1		0 5	_	_	3	_	0	_	17	0	34	0	0	0 0	0	0	0	3	0	6 (0 7	0	102	_	107	0 3	0 0			455	_	38 208		8715		21 91	. 5	0	155	0 1	83 0
12:00 12:15	9 1	16 2	0	0	0	0	0	0 1	1 0	0	0	2	0	0 7	7 6	0 1	0	9	32	0	0	29	0	48	0	0	0 0	0	0	0	0	0	7 (0 5	0	99	0 1	158	0 5	0 0	33	0	568		213	39			25 11	1 3	0	185	0 2	44 0
12:15 12:30 1	.0 1	14 2	0	0	0	0	0	1 (0 0	0	1	0	0	0 9	9 6	2 2	0	6	35	0	0	29	0	41	0	0	0 0	0	0	0	1	0	6 (0 6	0	71	0 1	108	0 4	9 0	46	0	499		208	88			27 11	1 4	0	155	0 2	02 0
12:30 12:45	6 3	30 0	0	0	0	0	0	0 0	0 0	0	2	0	0	0 1	4 7	7 1	. 0	5	31	0	0	38	0	46	0	0	0 0	0	0	0	1	0	5 (0 2	0	134	0 1	137	0 5	8 0	36	0	623		205	57			27 13	8 1	0	235	0 2	22 0
12:45 13:00	5 2	22 4	0	0	0	0	0	0 1	1 1	0	0	2	0	0 2	0 6	0 1	. 0	9	23	1	0	53	0	72	0	0	0 0	0	0	0	1	0	2 (0 4	0	156	0 1	170	0 7	2 0	70	0	749	24	39 218	88 1	8472		34 10	8 7	0	283	0 3	17 0
13:00 13:15	7 2	20 0	0	0	0	0	0	0 2	2 0	0	0	1	0	0 2	0 7	7 1	. 0	10	35	3	0	45	0	66	0	0	0 0	0	1	0	1	0	2 (0 6	0	114	0	88	0 6	8 0	53	0	620	24	91 224	44 !	8577		37 13	5 4	0	230	0 2	14 0
13:15 13:30 ₹	8 1	12 0	0	0	0	0	0	0 0	0 0	0	0	4	0	0 1	1 6	5 2	0	9	32	1	0	34	0	45	0	0	0 0	0	0	0	0	0	4 (0 5	0	103	0 1	116	0 6	0 0	35	0	546	25	38 24	40	8929 0	0.837	28 11	3 3	0	201	0 2	01 0
13:30 13:45	4 2	21 2	0	0	0	0	0	0 0	0 0	0	2	0	0	0 1	1 5	8 4	0	2	30	1	0	28	0	46	0	0	0 0	0	0	0	0	0	4 (0 3	0	111	0	88	0 6	8 0	43	0	526	24	11 222	20 5	9092 0	0.852	19 10	9 7	0	211	0 1	80 0
13:45 14:00 1	.5 2	20 2	0	0	0	0	0	2 1	1 1	0	0	4	0	0 1	9 6	2 1	. 0	12	19	0	0	56	0	50	0	0	0 0	0	0	0	1	0	6 (0 5	0	139	0 1	187	0 4	9 0	30	0	681	23	73 254	48	9452 0	0.886	48 10	6 4	0	250	0 2	73 0
14:00 14:15 1	4 2	20 3	0	0	0	0	0	1 1	1 0	0	1	3	0	0 2	8 8	2 1	. 0	12	27	0	0	45	0	55	0	0	0 0	0	0	0	0	0	2 (0 4	0	135	0 1	105	0 6	1 0	37	0	637	23	90 266	67 .5	9875 0	0.926	56 13	3 4	0	243	0 2	01 0
14:15 14:30 5	5 2	21 0	0	0	0	0	0	0 0	0 0	0	1	2	0	0 1	2 9	0 1	0	10	19	0	0	36	0	44	0	0	0 0	0	0	0	2	0	1 (0 5	0	125	0 1	116	0 5	2 0	71	0	613	24	57 204	40 9	9475		28 13	2 1	0	214	0 2	38 0
14:30 14:45	7 :	16 1	0	0	0	0	0	0 1	1 0	0	0	2	0	0 1	3 7	5 0	0	8	22	1	0	39	0	34	0	0	0 0	0	0	0	1	0	5 (0 5	0	114	0 1	138	0 4	0 0	39	0	561	24	92 204	44 9	9299		28 11	6 2	0	198	0 2	17 0
14:45 15:00	1 1	11 1	0	0	0	0	0	1 1	1 0	0	0	1	0	0 8	8 8	2 (0	4	14	0	0	32	0	30	0	0	0 0	0	0	0	0	0	1 (0 2	0	84	0	85	0 4	5 0	36	0	439	22	50 186	65 f	8616		14 10	9 1	0	162	0 1	53 0
17:00 17:15	0 2	24 0	0	0	0	0	0	0 1	1 0	0	0	0	0	0 1	7 6	9 2	0	11	20	0	0	44	0	48	0	0	0 0	0	0	0	1	0	5 (0 4	0	152	0 1	133	0 6	3 0	46	0	640		18:	16			28 114	4 2	0	264	0 2	32 0
17:15 17:30 1	2 2	23 2	0	0	0	0	0	1 (0 0	0	0	3	0	0 1	8 5	0 3	0	5	22	1	0	27	0	24	0	0	0 0	0	0	0	0	0	0 (0 1	0	76	0 1	107	0 3	6 0	20	0	431		192	21			36 98	6	0	139	0 1	52 <mark>0</mark>
17:30 17:45	9 2	29 2	0	0	0	0	0	0 (0 0	0	0	2	0	0 6	6 6	8 1	. 0	9	27	0	0	64	0	54	0	0	0 0	0	0	0	0	0	0 (0 4	0	147	0 1	142	0 7	6 0	40	0	680		204	48			24 12	6 3	0	287	0 2	40 <mark>0</mark>
17:45 18:00 3	1 2	20 0	0	0	0	0	0	0 0	0 0	0	2	0	0	0 3	2 8	5 4	0	15	45	1	0	30	0	35	0	0	0 0	0	0	0	1	0	2 (0 7	0	115	0	95	0 5	0 0	25	0	595	23	16 245	55 5	8240 0	0.764	80 15	5 0	0	197	0 1	63 <mark>0</mark>
18:00 18:15 _ 1	.0 2	25 1	0	0	0	0	0	1 (0 0	0	0	3	0	0 2	4 7	8 3	0	8	40	0	0	50	0	42	0	0	0 0	0	0	0	1	0	1 (0 3	0	120	0 1	140	0 5	5 0	40	0	645	23	51 255	58 5	8982 0	0.832	43 14	6 4	0	226	0 2	26 <mark>0</mark>
I Ā	_	28 0	0	0	0	0	_		0 0	0	1	1	0		2 6	_		4	_	2		86	_	45	0	0	0 0	0	0	0	0		2 (0 5	0	168	_	135	_	5 0			702	_	_	_	3759 C		22 13	_	0	321		23 0
18:30 18:45 景	_	35 3	_	0	0	0	-	0 0			0	0	0		8 7	_	_	11	_	0		50	_	50	-	-	0 1	_	0	0	1		2 (0 5	0	100	_	148		8 0	_	-	652	25		_			37 15	_	0	210	_	49 0
	_	25 2	0	0	0	0	-	0 0		+-	-	3	0	_	3 5	_		3	_	0	_	49	_	-	-	-	0 1		0	0	0	_	2 (-	_	45	-	196	_	2 0	-		553	_			9758	_	21 10		0	138		83 0
	_	18 0	0	0	0	0	-	0 0		+-	0	1	0		3 4	_		0	-	0	_	82	_		_	-	0 1		0	0	1	0	0 (0 4	0	183	_	186	0 5				739	_	_	_	9371	_	8 83		0	323		24 0
	_	12 1	_	0	0	0	_	0 0		_	0	1	0	_	7 5	_	_	9	_	0	_		_	-	_	-	0 1	_	0	0	1	0	0 (_	150	-	102	0 6	_	_	_	558	_	_		8624		22 93	_	0	260	_	80 0
	_	22 0	0	1	0	0	0	0 0	0 0	0	0	2	0	_	9 6	_	. 0	_	_	0			_	-	0	1	0 2	0	0	0	1	_	_	0 3	0	167	-	188		_	_		737				8342		26 11	_	0	288		08 0
	-	9 1	0	0	0	0	0	1 (, ,		1	1	0		2 6	_		3	28	1	_	43		47	-		0 0		0	0	0	•	2 (0	0	99		102	0 3	_	- 5,	_	498	25	32 173	39	7955		27 10	2	0	183	0 1	86 0
. ,	_	145 1	0	0	0	0	0	3 2		0	1	7	0		2 4	_	_	23		5	_	183		_	_	_	0 2		2	0	6	_	18 (0 18	_	552		642	_	11 0		_				_								
H.P(TARDE) 4	_	73 7	Ť	0	0	0	0	3 2	2 1	0	3	11	0	_	9 26	_	0	35	108	2		-00	_		0	0	0 0	0	0	0	1	0	16 C	0 17		488		196	0 23	38 0	_	_	1	1		_	_	_					_	
H.P(NOCHE) 5	4 1	108 4	0	0	0	0	0	1 (0 0	0	3	4	0	0 8	6 30	08 8	0	38	162	3	0	216	0	172	0	0	0 1	0	0	0	3	0	7 (0 20	0	503	0 5	518	0 22	28 0	147	7 0		_		_	_	_		1		_	_	
		_					_														_		~			_		_	_			_							_	_				_		_		_				_	_	
	_	/AÑAN		-		_			TARDE							NOCHE		4_		_		_	MAÑA	_		4				TAR					_		NOCH			_		1		+		_	_	_		1		_	_	
	_	301 30	_	3		_		300 3		_						01 3	_	3		_		_	31	_	33	4			30	31	_	33			_	30	31	_	33	_		1		+		_	_	_		1		_	_	
15	_	709 9	_	-					51 18	_	_				82 5		15	0							0	_			905	_		0	_	_		954		361		4		-		+	-	_	_	_				_	-	
X4 20	_	92 16	_	1		Х4		224 53	_	_	_		Х4	_	20 6	_	20	0		Х4	_	-			0	_		X4	1000			0	_		X4	1284	_	996	_	4	1	-		+	-	_		_	_			4	\perp	
F.H.P 0.	74 0	0.5	6 ###	ŧ		F.H.	P (0.67	87 0.6	4 ####	#		F.H.	P 0.:	57 0.	96 0.	75 ###	#		F.H.	P (0.63	#### (0.64 #	###		F	.H.P	0.91	####	0.78 #	###		F	.H.P	0.74	#### 0).86 ##	###															

																	<u>A</u>	FORO	VEHIC	JLAR(S	ENTID):E-O	<u> </u>																				ш		
	ACCESOS AL PUENT		RGOS																																									_	
FECHA: MIERO	COLES 12 DE JUNIO	DEL 2019																				_							_															+	
	AUTO	201			MICRO	_	+	CAN				07074			TO LINE			AUTO	_		BUS	_		MICE			CAMI			мотот	TA 1/1	-	NOTO LI				ACCESOS				_	_		_	
HORAS DE CONTROL	AUTO	BU	202 203									OTOTA				_			_			22 2					_		_			23 2			TOTAL 3 1/4 HOR		1/4	TOTAL HORA	FHP		POR MOV			POR MOV	
	200 201 202						-	_		_	_	_	02 203	_	201 20	-					_	22 23		_	22 2	_	_				22			22 2	_	HORA	HUKA	HUKA		_	201 20		_	_	22 23
06:00 06:15	0 9 10		0 0	0	-	2 0	0	_	-	_	_	5 18	_	_	3 2	_	17		0 0	\rightarrow	0 (0		1	0 0	2	_	0 0		23	0 1	0 4	_	0 0	213	-	691				31 37	_		79 0	0 0
06:15 06:30			0 0	0	-	0 0	0	_	_	_	_	8 14	_	_	4 3		18		0 0	-	-	0	-	_	0 0	2	_	0 0			0	_	_	0 0	247	4	875	 			20 24	_			0 0
06:30 06:45	0 5 16		0 0	0	_	1 0	0	+-	-		_	4 2	_	_	12 8	_	17			-		0	-	-	0 0			0 0	_	51	0	_		0 0	308		1005	 			34 55	_			0 0
06:45 07:00	0 16 8	0 0 0	0 0	0	-	1 0	0	2	3	_		1 59		_	12 15	_	24		0 0	-	0 (_		0 0	2	_	0 0		74	0 1	0 24		0 0	428	1196	1295	3866			54 86			166 0) 0
07:00 07:15	0 22 23		0 0	0	1 :		0	5	$\overline{}$	0	_	1 70	_	_	16 19	_	75 :	_	0 0	\rightarrow	_	0	_	_	0 0	2	_	0 0	_	75	0 1	_	39	0 0	702	1685	_	5054			85 11	_		224 0) 0
07:15 07:30	0 41 33		0 0	0	0 :	_	0	5	-	0		34 10		_	25 40		68	_	0 0	-	0 () 0	_	_	0 0	4	_	0 0	_	71	0 1	0 60	_	0 0	805	2243		7053	0.614	_	155 17	-		199 0) 0
07:30 07:45	0 27 28	0 0 0		0	1 :	_	0	5	-	0	_	2 55		_	21 40		54	_	0 0	-	- '	0 0	0	_	0 0		10	0 0		43	0		62	0 0	622	2557	2325	8373	0.728	_	96 13			190 0) 0
07:45 08:00	0 13 37	0 0 0		0	1 :	1 0	0	_	2	0		8 75		_	26 35		44	_	0 0	-		0 0	0	_	0 0		12	0 0		03	0 1		.5	0 0	676	2805		9323	0.811		103 15	_	200 2) 0
08:00 08:15	0 29 29	0 0 0	-	0	0 :	1 0	0	_	4	0	_	7 85	_		18 40		40		0 0		0 () 0	0	-	0 0	_	16	0 0	_	96	0	0 45	_	0 0	733	2836		9899	0.861	_	101 15			281 0) 0
08:15 08:30	0 33 16		0 0	0	2 :	_	0	-	0	-		4 46			22 15		49		0 0		-	0 0	0	_	0 0			0 0		71	0	57		0 0	696	2727	2146	9171			106 78	_		242 0) 0
08:30 08:45	0 25 14		1 0	0	1 (0 0	0	5	5	0		2 43			20 14		48		0 0	\rightarrow	-	0 0	_	_	0 0	7		0 0		63	0	0 45		0 0	623	2728		8879			103 77	_	_	218 0) 0
08:45 09:00	0 29 16	0 0	0 0	0	1 :	1 0	0	5	8	0	_	1 47	_		25 16	_	36	_	0 0	-	0 () 0	-	2	0 0		20	0 0		87	0		57	0 0	644	2696	2081	8715			91 88	_		233 0	0 0
12:00 12:15	0 32 11	0 0 0	0 0	0	_	1 0	0	1	5	_	_	6 47		_	26 23		29	_	0 0	\rightarrow	_	0 0	-	-	0 0		11	0 0	_	44	0 1		35	0 0	531	4	2139	↓			97 87	_		158 0) 0
12:15 12:30	0 38 16	0 0 0	0 0	0	_	1 0	0	7	9	0	_	18 35	_	_	29 20		45		0 0	_		0 0	_	-	0 0		15	0 0	_	48	0			0 0	552	4	2088	↓			112 81	_		166 0) 0
12:30 12:45	0 33 15	0 0 0	0 0	0		1 0	0	7	4	0	_	1 40	_	_	28 20		37	_	0 0		0 (-			0 0	4	_	0 0		58	0	0 44	_	0 0	578	4	2057	↓		_	120 80	_		181 0) 0
12:45 13:00	0 31 24		0 0	0		1 0	0	4	4	_	_	9 55	_	_	16 30		38	_	0 0	-		0 0		\rightarrow	0 0	2	_	0 0		32	0	_		0 0	597	2258	2188	8472		_	140 11	_		126 0) 0
13:00 13:15	0 32 19		0 0	0	2 :	_	0	+ -	4	_	_	39			36 32	\rightarrow	56	_	0 0	-	-	0 0	_	_	0 0	3	_	0 0		46	0			0 0	662	2389	2244	8577		_	129 95	_	200 1	179 0) 0
13:15 13:30 A	0 35 14		0 0		0 (0	-	5	-		3 49			33 25		56		0 0	_	-	0 0	0	_	0 0			0 0			0			0 0	638	2475		8929	0.837		114 93	_		183 0) 0
13:30 13:45 🛱	0 33 17	0 0 0	0 0	\rightarrow	-	0 0		8	\rightarrow	-		10 38			25 30		45		0 0	_	-	0 0	0	_	0 0			0 0		51	0			0 0	567	2464		9092	0.852		106 90	_		162 0) 0
13:45 14:00	0 28 22		0 0	0	0 :	1 0	0	_	_	0	_	0 68			31 29		60		0 0	_	-	0 0	_	-	0 0			0 0		-	0 1			0 0	605			9452	0.886		134 12	_		130 0) 0
14:00 14:15	0 35 27		0 0	0		0 0	0	2	3	0	_	9 36			36 31			59		_		0 0	1	_	0 0		-	0 0	_	79	0	_		0 0	617	2427		9875	0.926		133 97	_			0 0
14:15 14:30	0 27 18		0 0	0	-	1 0	0	_	2	_	_	9 43	_		27 30	$\overline{}$	36			\rightarrow	_	0 0	\rightarrow	\rightarrow	0 0	3		0 0	_		0	_		0 0	564	2353	2040	9475			90 94	_		186 0) 0
14:30 14:45		0 0 0	0 0	0	0 :	1 0	0	6	1	0	_	19 54	_	_	27 23	_	30		0 0	-	-	0 0	_		0 0	3		0 0	_	71	0		32	0 0	521	2307	2044	9299			93 98	_			0 0
14:45 15:00	0 27 9	0 0 0	0 0	0	0 (0 0	0	4	1	0	_	3 36		_	21 25	_	42	_	0 0	Ů	0 () 0	·	2	0 0	0		0 0		48	0		45	0 0	532	2234	1865	8616			85 71		150 1	186 0	J O
17:00 17:15	0 36 10	0 0 0	0 0	0		1 0	0	4	-	0	_	4 39		_	33 26	_	43	_	0 0	_	0 (J O	_	2	0 0	1	_	0 0		59	0 (_	39	0 0	577		1816	↓			131 82	_		191 0) 0
17:15 17:30	0 34 16	0 0 0	0 0	0	1 (0	_	4	-	_	37 48			23 19		54		0 0	_	0 (-	_		0 0	2	_	0 0		44	0	36	_	0 0	593	4	1921	↓		_	97 87	_		182 0) 0
17:30 17:45	0 34 22		0 0	$\overline{}$	_	0 0	0	-	-	0		18 45			32 27		45		0 0	\rightarrow	-	0 0	_	_	0 0	6		0 0		45	0 (32	_	0 0	545		2048	Ь			120 95	_		1.0	0 0
17:45 18:00	0 53 18		0 0	_	2 :	_		5	_	0		52 53			10 28	_	50		0 0	-	1 () 0	0	_	0 0		12	0 0		50	0	34	_	0 0	644	2359	2455	8240	0.764		152 10			184 0) 0
18:00 18:15	0 44 38		0 0	_	2 :	_		7	_	0	_	8 55	_		29 24	_	25	_	_	_	0 () 0	0	_	0 0		15	0 0		-	0	_		0 0	577	2359	2558	8982	0.832		140 12	_		154 0) 0
18:15 18:30 O	0 56 39		0 0	0	1 :	1 0	0	5	_	0		7 48		_	12 25	_	_	84	_	-	-	0 0	0	-	0 0	_	_	0 0	_	57	0	_		0 0	708	2474		9759	0.904		161 11			208 0) 0
18:30 18:45	0 50 39		0 0	0	0 :	1 0	0	1	-	0	_	6 43	_		10 21		35		0 0	-	0 () 0	-	4	0 0	1		0 0		57	0 (0 46		0 0	642	2571	2376	10087	0.935		137 10			200 0) 0
18:45 19:00	0 42 18		0 0	0	1 :	_	0	0		_	_	4 40	_	_	32 20		43			_	_	0 0	_	-	0 0	1		0 0	_	-	0 (0 0	596	2523	2126	9758			139 83	_		105	0 0
19:00 19:15	0 41 31		0 0	0	0 (0 0	0	1	1	_	_	1 5			26 27		43		0 0	-		0 0	_		0 0	1		0 0		63	0 (0 47		0 0	572			9371			109 11			171 <mark>0</mark>) 0
19:15 19:30	0 43 23	0 0 0	0 0	0	1 :	1 0	0	1	1	0	_	0 5:	_	_	21 15	$\overline{}$	45		0 0	-	0 (J O		0	0 0	0	\rightarrow	0 0	_	45	0 (0 40	_	0 0	536	_		8624			106 91	_			0 0
19:30 19:45	0 38 19	0 0 0	0 0	0	1 :	1 0	0	1	1	0	0 2	_	_	_	29 24	_	39	_	0 0	0	1 () 0	_	2	0 0	1	7	0 0	_	37	0	25		0 0	491	2195		8342			96 92	_	158 1	145 0	0 0
19:45 20:00	0 30 13	0 0 0	0 0	0	1 (0 0	0	0	1	0	_	9 4	_	-	26 13	_	28	_	0 0	_	1 (J 0	-	3	0 0	1	_	0 0	_	50	0 (44	0 0	469	2068	1739	7955		0	86 71	1 0	144 1	168 0) 0
H.P(MAÑANA)	0	0 0 0	0 0	0	2 4	4 0	0	22	17	0		31 31			90 155	0			0 0		2 (·		0 0	22	_	0 0	468		0	0 173		0 0											
H.P(TARDE)	0 131 80	0 0 0	0 0	0	1 :	1 0	0	18	17	0	0 2	12 19	91 0	0 1	25 115	0	199	230	0 0	0	0 () 0	2	11	0 0	10	53	0 0	507	222	0	0 158	144	0 0											
H.P(NOCHE)	0 203 134	0 0 0	0 0	0	5 4	4 0	0	18	16	0	0 2	13 19	99 0	0 1	51 98	0	155	285	0 0	0	1 () 0	1	8	0 0	10	49	0 0	443	201	0 (0 175	202	0 0											
																\perp						\perp	\perp							ш		_									_		1	\perp	\perp
	MAÑANA				TARDI							NOCHE				1		ΛΑÑΑI				_		TARE						NOCI								-			_	_	$\perp \perp$	\perp	\perp
	200 201 202				201 2	_	_				_	_	02 203			1		21	_	1		_	20	_	22 23	_	-		20	_	22 2	_				-						_	$\perp \perp$	\perp	\perp
		0		_	487 4	_	_					90 45	_						0 0			\perp	876		0 0	_			784	_	_	0											\perp	\perp	\perp
X4	0 000 100	0	Х4	0	536 49				X4			44 49				X4			0 0			X4	992		0 0	_		X4	892		-	0											$\perp \perp$		\perp
F.H.P	#### 0.73 0.86 #	###	F.H.P	####	0.91 0.	81 ###	#		F.H.	.Р #	#### 0.	92 0.9	91 ####		F	.H.P	0.8).79 ##	!!!! !!!!!			F.H.P	0.88	0.89 #	HHH HHH	#		F.H.P	0.88	0.9 #	#### ##	##												\perp	

																									<u>A</u>	FOR	O VI	HICL	JLAF	R(SEI	NTID	<u>0:0-</u>	<u>E)</u>																													\Box				\Box
UBICACIO					DE BU	RGOS																																																								_		_		_
FECHA: MI	RCOLES 1	2 DE JU	NIO DE	L 2019										_		_	_		_	_	_	_	_						_	_	_	_						_	_	_	_	_						_	_	_	_						_	_	_	_	_	-	_	-	_	-
													_	_		_				-						-	_			_									_															ACCE	ESOS			_	_	_	_	_				_
HORAS DE		AUTO 401 40			BU				MIC 401				CAM	_		_	MOT 401	_		_	_		NEAL		40		JTO		-	_	BUS	_	- 10	40	_	CRO 42			-	AMIC	_	43	40	MOT			_		O LIN		T 43 1/4		SUM			TOTAL HORA		P	TAL PO				TOTAL 40	_	_	_
			12 403			402			401	402	403			402	403			_	2 40	_		_	402	403	_	41			3 4	-	41	_	43	40			43	-	.0	41	_	43			42	43	·	-		_	_		HOR	HL	ORA	пока	-	_	00 40 1 33		402	403	40	_	42	ŕ
06:00 06:15	15		0	0	0	0	-	0	1	0	0	0	-	0	0		16	-	0	_	_	5	0	0	\rightarrow	59	-	+-	10	_	_	0	0	0	0	14	0	0		_	0	0	\rightarrow	45		0	0		_	_	_	255		_	91		₩	3:		_	-	0	0	132		
06:15 06:30		11 0	_	-	1	0	0	1	2	0	0	1	-	0	0	26			-	_	1	_	-	0	\rightarrow	81	-	+-	_		-	0	0	0	0	0	0	0	_	_	_	-	\rightarrow	38	37	0	0	-	17	-	_	319	-		75 005		₩	59 64		_	1	<u>-</u>	0	154		
06:30 06:45		10 0	_	-	0	0	0	1	0	0	0	3	_	0	0	_	16	-	-	_	3 1	_	0	0	\rightarrow	76	-	0	_	_	-	0	0	0	2	1	0	0			-	-	\rightarrow	46		0	0	-	_	_	_	338 359	127	_	295	2000	₩	64	_	_	1	<u>-</u>	0	161 130		
06:45 07:00	15	16 0	_	1	1	0	0	0	1	_	0	2	$\overline{}$	_	0		25 30	_	-	_	1	_	-	0	\rightarrow	56	-	0	_		-	-	0	0	0	0	0	0	_		2	-	0	42		0	_	_	20		_	359 477	149			5054	₩	-	4 65	_	1	<u>-</u>	0	167		
07:00 07:15	≥ 15 ≥ 20	_	0	0	0	0	0	1	0	0	0		$\overline{}$	-	-	_	-	-	0	_	1 1	_	0	0	_		14	-	_	_	_	0	0	0	3		0	0	17	_	1	0	0	62		_	0	-	_	_	_		179	_		7053	-	_	_	_	_	-	0	177		<u> </u>
07:15 07:30	20	-	0	Ů	1	0	0	1	2	0	0	-	3	0	0	_	45	-	0	_	1 2	_	0	0	\rightarrow		30	-	_	0 2	_	0	0	0	2	0	0	0	_	_	3	0	0		110	0	0	_	3 40		_	523 518	207		3/4	7053 8373	0.6	14 15	_		1	0	0	177		10
07:30 07:45	=	_	0	1	-	0	0	\rightarrow	_	0	0		5	0	0	_	39	-	0	_) 3	_	0	0	\rightarrow		49	-	_	0 (_	-	0	0	2	1	0	0		5	_	0	0	56		0	0	_	_	_	_		207		_		0.7	28 17	70 10	06	1	0	0	238		<u> </u>
07:45 08:00	45	_	0	0	_	0	0	0	1	0	0		1	-	0	_	40 50	-	0	_	3 2	_	0	0	\rightarrow		56 70	_	_	0 (_	0	0	0	4	0	0	0		1	_	0	0	57		0	0	_	30		_	723 588	244	-	155 155	9323	0.8		9 10	02	1	0	0	213		<u> </u>
08:00 08:15 08:15 08:30	50	12 0	0	3	_	0	-	2	0	0	0	3	-	0	0		35	_	0	_	2 1	_	0	0	_		59	_			-	0	0	0	2	0	0	0	1:	_	2	0	0	82 122		0	0	_	_	_		592	205.			9899	0.8	15	79 10 51 66	13	1	0	0	275	-00	 0
	_	34 0		0	0	0	-	0	2	0	0	5	4	0	U		37		-		1 2		0	0	\rightarrow	93	-	_	_		_	0	0	0	3	1	0	0	_		1	-	_	132		0	0	-	_	_	_	592 580	278		033		₩	14		_	1	-	0	270		
08:30 08:45	63		0	0	0	0	0	2	1	0	0	6	6	0	U	85	_	_	0	_	5 2	_	0	0	\rightarrow	88	-	-			0	0	0	0	5	0	0	0	8	_	0	0	_	105		0	0	52	_	_	_	778	2/8		081		₩	20	_	15	1	-	0	258		
08:45 09:00 12:00 12:15	45	_	0	0	0	0	0	2	1	0	0	3	7	0	0		32		0	_	5 2		0	0	_		49	_	+ 0	,	0	0	0	0	3	0	0	0	_		0	0	_	131		0	0	_	_	_		348	283		139	8/15	₩	12		10	1	+	0	374		ا
12:15 12:30	45	_	_	0	0	0	0	1	2	0	0	5	7	0		_	42	-	0	_	2 3	-	0	0	\rightarrow		98	0	+ ;		0	0	0	0	2	0	0	0	9	_	1	_	\rightarrow	136			_	_	39	-		339	-		088		╆	16	_		+	0	0	301		
12:35 12:30	45	_		0	0	0	0	0	_	0	0	4	6	0	0	_	32	-	0	_	5 3	_	0	0	_	71	-	0		_	-	0	0	0	1	0	0	0	16	_	3	_	\rightarrow	70		0	0	_	1 30	-	_	732	-	_	057		╆	18		_	+	0	0	212		+
12:45 13:00		45 0	_	0	0	0	0	-	1	_	0	4	-	0			80	-	-	_) 4	_	0	0	_		37	+	+	_	-	0	0	0	3	1	0	_	10	_	0	_	\rightarrow	50		0	_	30	_	-	_	715	212	_	_	8472	╁	21	_		+	0	0	155		1
13:00 13:15	60	-	_	0	0	0	0	1	1	0	0	6	5	0			75	-	-	-	5 4	_	0	0	_	74	-	+	_	_	_	0	0	0	1	0	0	0	_	_	2	_	\rightarrow	94	67	0	0	_	3:	_	_	764	305	_	_	8577	╁	20	_	_	+	0	0	215		10
13:15 13:30	73		0	0	-	0	0	2	_	0	0	_	5	_	0		85	-	-	_	3 4	\rightarrow	0	0	\rightarrow		100	-	_	0 (_	0	0	0	6	1	0	_	14	_	_	_	\rightarrow	69		0	_	_	48	_	_	334	304	_		8929	0.8		,,	, <u></u>	+	┽	0	194		10
13:30 13:45	70	55 0	0	0	-	0	-	1	_		n	5	-	_	0		70	_	+	_) 5	_	0	n	0				_	0 (_	0	0		3		0	_	7	_	2	n		74		0			36		_	749	304			9092	0.8		6 1	79	+	ᆉ	<u></u>	185		Ť
13:45 14:00		90 0	_	0	-	0	-	0	-	0	0	5	\longrightarrow	0	0		85	_	_		3 6	_	0	0			35		_	_	_	0	0	0	2	0	0	0	_		1	0	0		100	0			26		_	386	323			9452	0.8		0 24	44	+	0	0	230		0
14:00 14:15	65	_	_	0	_	0	_	\rightarrow	\rightarrow	0	0	5	\longrightarrow	0	0	_	65	-	_	_) 3	_	0	0			56				_	0	0	0	3	2	0	-	8	_	0	0	0	182					39		_	997	346		_	9875	0.9			49	<u></u>	0	0	397		_
14:15 14:30		37 0			0	0	-	-	-	0	0	3	-	0	0		35	-	-	_	5 3	_	_	0	\rightarrow		103	_	_		_	0	0	0	0	2	0	0	_	_	2	0	\rightarrow	68			_		3 22		_	705	333	_	_	9475	1	21	15 10	08	0	0	0	183		_
14:30 14:45		30 0	_	0	\rightarrow	0	_	3	0	0	0	4	$\overline{}$		0	_	50	-	+	_) 1	_	_	0	\rightarrow		70	+-	-	_	_	0	0	0	1	0	0	0	_	_	_	_	\rightarrow	80		_	-	-	65	-	_	304	339	_	_	9299	T	19	_	_	<u></u>	0	0			_
14:45 15:00	27	_	_	0	0	0	0	6	3	0	0	4	4	0	0	80	_	-	0	_) 3	_	0	0	_	50	-	+	1	0 (-	0	0	0	2	1	0	0	7	_	0	0	-	105			_	27	_	-	_	707	321			8616	_	15		_	0	0	0	191		0
17:00 17:15		16 0	0	0	0	0	0	0	0	0	0	0	1	0	0		10	-	0		1 1		0	0	_	93	_	-) (0	0	0	0	1	0	0	0	13	3	0	0	_	65		0	0	_	26	_		510	JEZ		316	0010	T	78	-		0	0	0	226		0
17:15 17:30		45 0	_	0	0	0	0	1	1	0	0	3	6	0	0	_	50	-	0		3 4		0	0	_	72	-	+	-	0 (0	0	0	0	3	0	0	0	_	_	1	0	\rightarrow	93		0	0	_	_	-	_	583		19	21			15	8 15	50	0	0	0	196	179	0
17:30 17:45		36 0	_	_	0	0	0	3	1	0	0	5	_	0	0	_	48	-	0	_	3 2	_	0	0			45	_	_	0 (_	0	0	0	3	1	0	0	13	_	0	0		98		0	0	_	19	_	_	701		20	048			17	78 11	18	0	0	0	262	143	0
17:45 18:00	55		0	0	0	0	0	0	_	0	0	5	1	0	0	_	40	-	0	_) 3	_	0	0			115		_	0 (_	0	0	0	3	3	0		1:	_	0	0	-	97		0	0		35		_	777	267	1 24	155	8240	0.7	64 19	95 11	19	0	0	0	236	227	0
18:00 18:15	40	36 0	0	0	0	0	0	0	1	0	0	4	4	0	0	75	80	0	0	70) 4	19	0	0	0	95	114	0	C	0 (0	0	0	0	3	1	0	0	1	7	1	0	0	100	111	0	0) 40)	901	306	2 25	558	8982	0.8	32 18	9 17	70	0	0	0	275	267	0
18:15 18:30	70	65 0	0	0	0	0	0	0	0	0	0	4	0	0	0	74	76	0	0	45	5 3	31	0	0	0	111	101	0	C	0 (0	0	0	0	1	2	0	0	10	0	0	0	0	142	102	0	0	37	25	; ()	396	327	26	598	9759	0.9	04 19	93 17	72	0	0	0	301	230	0
18:30 18:45	45	25 0	0	0	0	0	0	1	1	0	0	7	1	0	0	85	73	0	0	75	5 3	30	0	0	0	59	47	0	C	0 (0	0	0	0	2	0	0	0	14	4	0	0	0	61	93	0	0	45	2	, ()	591	326	23	376	10087	0.9	35 21	13 13	30	0	0	0	181	167	0
18:45 19:00	70	78 0	0	1	0	0	0	1	2	0	0	1	3	0	0	85	64	0	0	75	5 3	35	0	0	0	86	76	0	() (0	1	0	0	2	0	0	0	13	3	0	0	0	93	109	0	0	27	39) () ;	361	334	21	126	9758	Ī	23	33 18	32	0	0	0	221	225	0
19:00 19:15	55	35 0	0	0	0	0	0	1	0	0	0	2	3	0	0	82	50	0	0	20	5 3	36	0	0	0	102	86	0	C	0 (0	0	0	0	1	0	0	0	8	3	0	0	0	82	100	0	0	49	47	7 ()	765	321	3 21	171	9371		16	66 12	24	0	0	0	242	233	0
19:15 19:30	42	40 0	0	1	0	0	0	0	0	0	0	0	2	0	0	75	60	0	0	50) 1	15	0	0	0	101	68	0	C	0 (0	0	0	0	1	0	0	0	13	3	0	0	0	95	94	0	0	42	30) ()	729	304	5 19	951	8624		16	8 11	17	0	0	0	252	192	0
19:30 19:45	45	35 0	0	1	0	0	0	0	2	0	0	0	1	0	0	36	38	0	0	35	5 1	18	0	0	0	95	114	0	C) 1	0	0	0	0	2	0	0	0	9	9	0	0	0	117	111	0	0	47	2	7 ()	733	308	3 20	094	8342		1.1	17 94	4	0	0	0	270	252	0
19:45 20:00	40	50 0	0	0	0	0	0	0	0	0	0	0	0	0	0	85	55	0	0	3:	1 3	30	0	0	0	80	51	0	C	0 (0	0	0	0	2	0	0	0	2	2	0	0	0	56	57	0	0	29	29) ()	597	282	1 17	739	7955		15	6 13	35	0	0	0	169	137	0
H.P(MAÑAN	A) 155	122 0	0	1	1	0	0	3	4	0	0	11	12	0	0	330	174	0	0	19	8 1	13	0	0	0	329	205	0	() :	2	1	0	0	11	2	0	0	46	6 1	10	0	0	265	350	0	0	14	8 15	9 ()									Т						
H.P(TARDE	283	250 0	0	0	0	0	0	3	1	0	0	18	17	0	0	337	305	0	0	25	6 1	90	0	0	0	400	241	. 0	() /	0	0	0	0	14	4	0	0	4:	1 .	4	0	0	415	402	0	0	13	6 14	9 ()									Т		\Box				
H.P(NOCHE	210	172 0	0	0	0	0	0	1	2	0	0	20	6	0	0	329	269	0	0	23	0 1	42	0	0	0	365	377	0	0) /	0	0	0	0	9	6	0	0	52	2	1	0	0	400	380	0	0	16	7 12	7 ()															
		MAÑAN	Α						TAR								NC	CHE								MAÍ	ŇANA								TAI	RDE								NO	CHE																					
	400	401 40	2 403					400	401								401		2 40	3					40	41		ľ	3					40		42	_	3					40	41	42	43																				
	698	426 0	0					897	763	0	0					790	591	0	0								727							0	1006	800	0						0	993	891	0																				
X4		436 0	_			X4			976	0	0			X			688	_		_			X4				772					Х4		0	1588		0				Х4		_	1204																						
F.H.	0.88	0.98 ###	####			F.H.	Р	0.9	0.78	####	####			F.F	I.P	0.93	0.86	###	###	#			F.H.I	Р	####	0.84	0.94	###	#		\perp	F.H.	.P	####	0.63	0.83	####	Ħ			F.H.F	Р #	###	0.82	0.83	####														\perp						

(ANEXO N° 09) HOJA DE AFORO VEHICULAR DE LA INTERSECCION (VIERNES 14 DE JUNIO DEL 2019)

AFORO VEHICULAR(SENTIDO:S-N) **UBICACION:** ACCESOS AL PUENTE SEÑOR DE BURGOS FECHA: VIERNES 14 DE JUNIO DEL 2019 **AUTO** BUS MICRO CAMION **MOTOTAXI MOTO LINEAL** HORAS DE TOTAL TOTAL POR MOVIMIENTO TOTAL SUMA 102 103 1/4 HORA HORA HORA CONTROL 100 101 102 103 101 102 101 102 103 100 101 102 103 100 101 100 101 102 103 06:00 06:1 O O O O 06:15 06:30 O O O O O O O O О O О O O O 06:30 06:45 O О O O O О O O O O 06:45 07:00 07:00 07:1 O O О O О O О О O O O 07:15 07:30 О О 7118 0.612 O O 07:30 07:45 O O O O O O 8434 0.725 07:45 08:00 O O O O 0.808 C 0.859 08:00 08:15 O O O O O O O 08:15 08:30 o О O О О O O O O O O O O О O О O O 08:30 08:45 O O O O O O О О Ω O Ω O O O O O 08:45 09:00 O O 12:00 12:1 O O О О О O O O O О O O 12:15 12:30 О O O O O Ω O O O О О O o O O O 12:30 12:45 О O O O O O О o O O O 12:45 13:00 O O O O 13:00 13:15 O O О О О O О O О O O O 13:15 13:30 O 0.833 13:30 13:45 О O O O O 0.850 O O 13:45 14:00 O О O О O O О O O 0.888 O O 14:00 14:15 О O O 0.929 O O 14:15 14:30 O O О О O O O O O О O O 14:30 14:45 О О O O O O O O О О O 14:45 15:00 О O O 17:00 17:15 O О О O О О O O O O O 17:15 17:30 O O О o O O O O 17:30 17:45 O О О O О O О O O O O 17:45 18:00 O О O 8262 0.760 O 18:00 18:1 O O 0.829 o o O O O O 9803 0.902 O 18:15 18:30 О 0.932 18:30 18:45 O O O О O O 18:45 19:00 О O O 19:00 19:1 O O O O O o o О O О О O O O O O O O 19:15 19:30 О O O О O O O 19:30 19:45 O O О Ω O O O O O O 19:45 20:00 О О H P(MAÑANA) О О О О О О H.P(TARDE) H P(NOCHE) MAÑANA TARDE NOCHE 102 103 X4 О O **X4** О О **X4** О O F.H.P 0.9 #### 0.86 #### F.H.P 0.95 #### 0.92 #### F.H.P 0.96 #### 0.86

AFORO VEHICULAR(SENTIDO:N-S) UBICACION: ACCESOS AL PUENTE SEÑOR DE BURGOS FECHA: VIERNES 14 DE JUNIO DEL 2019

	_	AUTO	_	BUS		_	MICRO			AMIO			MOTOTA	VI	NAC.	TO LIN	FAL		AUTO			BU			MIC	200			AMION		140	TOTAVI		мото	LINEAL			ACC	ESOS			TAL POR M			I POR N	
HORAS DE CONTROL	_	_	303 300	301 3	02 303	200	301 302	303	_	301 30	•	_	301 30	•	_	301 3	•	20	_	32 3	2 2/	31	3	22 24	_		22		31 32	22		TOTAXI	33	30 31	_	TOT.	AL SU		1/4	TOTAL HORA	HP 30		302 3		L POR N	O TIME IT
						000	302 302	303		301 00	_		17 0				_			-			32	33 30	31		33	_	31 32	33			-	0 0		-		н	UKA	UILA	30		0 (32 33
06:00 06:15	2 1		0 0			0	0 0	0	0	0 0	-	-		-	_		0	15	_	21 0	0	-	0	0 0	_	1	_	3 0	0 0	0	28 0 38 0	-	-	4 0	5	0 13		_	598 885	-	0		0 0	0 46	0	51 0 72 0
06:15 06:30	0 1		0 0		-		0 0	-	-	0 0	-	_	21 0 31 1	_	_	4 (_	19 26	_	21 0	0	_	0	0 0	_	0	_		0 0	0	38 0 52 0		_	8 0	13 15	0 17	_	_	014	$-\!\!\!+$	3	_	1 (0 91	0	93 0
06:30 06:45	_	8 0	0 0		-	_	0 0	-	-	_	-	-	_	-			_	22	_	20 0	_	_	1	_		-	_	_		0		\rightarrow	_	23 0	9	0 22		_		3903	9		1	0 119	0	142 0
06:45 07:00	_				-	2		-	-	0 0	_	-		-	2	_	_	44	_	20 0	_	-	_	_	-		_	_	_	0		\rightarrow	_	_	-	0 48				5093		1 118	0 (0 119	_	152 0
07:00 07:15	14 4	9 0	_	-				0		1 0			78 0 125 1	_		10 (_	_	76 0	_	0	0	_	0		_	_	0 2	0	103 0	101 250		00 0	18	0 48	_			7118 O.			4 (0 398	-	403 0
07:15 07:30	18 4	-	_	0 0	_	\rightarrow	0 0	0	-	1 0	_		120 1		4	25 2 35 0	_	90	_	10 0	0	\rightarrow	0	_	0		-		0 1	0	200 0 142 0	176		_	45	0 103			_		.725 51		4	0 398		269 0
07:30 07:45	-				0		1 0	0	_	_	_	_		_		_	0		-		0	-	-		-		0	_		0			-		-	0 49	_	-	_				2 (0 225	_	145 0
07:45 08:00 08:00 08:15		0 0 5 0		0 0	0	_	0 0	0	-	2 0	_		92 1 110 0		5	_	. 0	29 36	_	30 0 45 0	0	_	0	0 0	_	-	0		0 3	0	100 0 110 0	86 130		34 0 57 0	_	0 62	_	-	483 10		.808 34 .859 28		2 (0 208	_	211 0
	_			0 0	0	0		0	-	_	_		84 2	_			_		-	14 0	0	_	2		-		-		0 5	0	110 0		-		26	0 55		-		9243	.839 28		7 1	0 190	_	219 0
08:15 08:30 08:30 08:45	-		-	0 0	_	0	_	-		0 0	_	_	67 3	_	9 5	-	_	24 38	_	17 O	1	-	0	0 0	_	0	_	_	0 7	0	144 0	$\overline{}$		13 0	-	0 55	_	_	_	9243 8956	21	_		0 190	_	190 0
08:45 09:00	7 1		0 0	0 0	-	_	3 0	0	0	1 1	+-	-	53 0	_	_	15 (_	17	_	34 0	0	-	0	0 0	-	3	_	6 0	0 7	0	102 0			80 0	32	0 45	_	_		8769	21		5 (0 155	-	183 0
12:00 12:15	_	6 2		0 0	_	0	1 0	0		2 0	_	_	60 1	_	9	_	_	29	_	18 0	0	_	0		0	0	0	7 0	0 7	0	99 0	158		50 0	33	0 56			145	3709	_		3 (0 185		244 0
12:15 12:30	-		_	0 0			0 0	-	-	0 0	_	_	62 2	_	6		_	29	_	41 0	0	_	0	0 0	-	1	0	6 0	0 6	0	71 0	_		19 0	46	0 49			096	+	_	-	4 (0 155		202 0
12:30 12:45	_	_	_	0 0		0	-	-	_	0 0	_	_	77 1	_	5	-	_	38	_	16 0	0	_	0		0	-	_		0 2	0	134 0	_	_	_	36	0 62		_	061	+	_	7 138	1 (0 235	_	222 0
12:45 13:00	_	2 4	-	0 0	_	-	1 1	_	_	2 0	_	-	60 1	_	-	23 1	_	53	_	72 0	0	-	0	_	0	-	_	2 0	_	0	156 0	_	_	_	70	0 74	_	_	_	8493		_	7 (0 283	_	317 0
13:00 13:15	-	_	0 0		_	_	2 0	-		1 0	_	_	77 1	_	10	_	_	45	_	66 0	0	-	0	_	0	-	_	_	0 6	0	114 0	_		8 0	-	0 62	_	_	_	8597	_		4 (0 230	_	214 0
13:15 13:30 →	_	2 0	$\overline{}$	0 0	_	\rightarrow	0 0	_	\rightarrow	4 0	_	_	65 2	_	_	32 1	_	34	_	45 0	0	\rightarrow	_	_	0		_	_	0 5	0		116	_	60 0	-	0 54						_	3 (0 201		201 0
13:30 13:45 RD	-	1 2	0 0		0	-	0 0	0	-	0 0		11			2	_	0	28	_	16 0	0	-	0	0 0	_	0	0	4 0	0 3	0		88		_	43	0 52	_		241 9	91/12 0	.850 19		7 (0 211	_	180 0
13:45 14:00	15 2		_	0 0) 0	_	1 1	0	-	4 0		-	62 1	_	12	_	_	56	_	50 0	0	_	0	0 0	_	_	0	6 0	0 5	0		187		19 0	_	0 68		_	599 9	9550 0	.888 48		4 (0 250	0	273 0
14:00 14:15	-	0 3		0 0	-	\rightarrow	1 0	0	-	3 0		28			12			45	-	55 0	0	-	0	0 0	-	0	-	2 0	-	0		105	_	_	37	0 64	_				.929 56		4 (0 248	0	201 0
14:15 14:30	_	1 0	_	0 0	-	0	-	0		2 0			90 1	_	10) 0	36	_	14 0	0	-	0	0 0	_	2	_	_	0 5	0	125 0			2 0	_	0 61		_	_	9574	28		1 (0 214	-	238 0
14:30 14:45	-	-		0 0) 0	-	1 0	-	_	2 0	0	_	75 0	_	_	22 1	_		_	34 0	0	_	0	0 0	-		0	5 0	0 5	0	114 0	-		_	39	0 56		197 2	040 9	9373	28	3 116	2 (0 198	0	217 0
14:45 15:00	1 1	_	0 0		_	1	1 0	_	0	1 0	0		82 0		4		_	32		30 0	0		0	0 0	_	0	0	1 0	0 2	0	84 0	85		15 0	36	0 43				8653	14		1 (0 162	_	153 0
17:00 17:15	0 2	4 0	0 0	0 0	0	0	1 0	0	0	0 0	0	17	69 2	0	11	20 0) 0	44	0	48 0	0	0	0	0 0	0	1	0	5 0	0 4	0	152 0	133	0	i3 0	46	0 64	0	1	817		28	3 114	2 (0 264	0	232 0
17:15 17:30	12 2	23 2	0 0	0 0	0 (1	0 0	0	0	3 0	0	$\overline{}$	50 3	0	5		0	27	0	24 0	0	0	0	0 0	0	0	0	0 0	0 1	0	76 0	$\overline{}$	0	86 0	20	0 43	1	1	924		36	5 98	6 (0 139	0	152 0
17:30 17:45	9 2	9 2	0 0	0 0	0 (0	0 0	0	0	2 0	0	6	68 1	. 0	9	27 (0 (64	0	54 0	0	0	0	0 0	0	0	0	0 0	0 4	0	147 0	142	0	76 0	40	0 68	0	2	048		24	1 126	3 (0 287	0	240 0
17:45 18:00	31 2	0 0	0 0	0 0	0 (0	0 0	0	2	0 0	0	32	85 4	0	15	45 1	0	30	0	35 0	0	0	0	0 0	0	1	0	2 0	0 7	0	115 0	95	0	0 0	25	0 59	5 23	346 2	473 8	8262 0.	.760 80	150	5 (0 197	0	163 0
18:00 18:15	10 2	5 1	0 0	0 0	0 (1	0 0	0	0	3 0	0	24	78 3	0	7	40 C	0 (50	0	12 0	0	0	0	0 0	0	1	0	1 0	0 3	0	120 0	140	0	5 0	43	0 64	7 23	353 2	564 9	9009 0.	.829 42	2 146	4 (0 226	0	229 0
18:15 18:30 O	5 2	18 0	0 0	0 0	0	0	0 0	0	1	1 0	0	12	67 0	0	4	38 2	0	86	0	48 0	0	0	0	0 0	0	0	0	2 0	0 5	0	170 0	135	0	55 0	38	0 70	7 26	529 2	718 9	9803 0.	.902 22	2 134	2 (323	0	226 0
18:30 18:45	8 3	15 3	0 0	0 0	0 (0	0 0	0	0	0 0	0	18	78 1	0	11	39 (0	50	0	50 0	0	0	1	0 0	0	1	0	2 0	0 5	0	100 0	148	0	8 0	44	0 65	2 26	501 2	379 10	0134 0	.932 37	7 152	4 (0 210	0	249 0
18:45 19:00	4 2	25 2	0 0	0 0	0	0	0 0	0	1	3 0	0	13	56 0	0	3	25 (0	49	0	50 0	0	0	1	0 0	0	0	0	2 0	0 1	0	45 0	196	0 4	12 0	25	0 55	3 25	559 2	129 9	9790	21	1 109	2 (0 138	0	283 0
19:00 19:15	5 1	8 0	0 0	0 0	0	0		0	0	1 0	0	3	49 1	. 0	0	15 (0	82	0	73 0	0	0	1	0 0	0	1	0	0 0	0 4	0	183 0	186	0	8 0	59	0 73	9 26	551 2	170 9	9396	8	83	1 (323	0	324 0
19:15 19:30	6 1	2 1	0 0	0 0	0	0	0 0	0	0	1 0	0	7	50 2	0	9	30 (0	46	0	48 0	0	0	1	0 0	0	1	0	0 0	0 0	0	150 0	102	0	64 0	28	0 55	8 25	502 1	954 8	8632	22	2 93	3 (0 260	0	180 0
19:30 19:45	3 2	2 0	0 1	0 0	0	0	0 0	0	0	2 0	0	9	62 1	. 0	13	28 (0	62	0	73 0	1	0	2	0	0	1	0	1 0	0 3	0	167 0	188	0	57 0	41	0 73	7 25	587 2	.090 8	8343	26	5 114	1 (0 288	0	308 0
19:45 20:00	10 !	9 1	0 0	0 0	0	1	0 0	0	1	1 0	0	12	62 0	0	3	28 1	0	43	0	47 <mark>0</mark>	0	0	0	0 0	0	0	0	2 0	0	0	99 0	102	0	9 0	37	0 49	8 25	532 1	744 7	7958	27	7 100	2 (0 183	0	186 0
H.P(MAÑANA)	52 14	45 1	0 0	0 0	0	3	2 0	0	1	7 0	0	72	447 3	0	23 1	108 5	0	183	0 1	91 0	0	0	2	0 2	0	6	0 1	18 0	0 18	0	552 0	642	0 2	41 0	169	0										
H.P(TARDE)	41 7	3 7	0 0	0 0	0	3	2 1	0	3 1	11 0	0	69	267 8	0	35 1	108 2	0	163	0 1	.96 0	0	0	0	0 0	0	1	0 1	16 0	0 17	0	493 0	496	0 2	38 0	145	0										
H.P(NOCHE)	54 1	08 4	0 0	0 0	0	1	0 0	0	3	4 0	0	86	308 8	0	37 1	162 3	0	216	0 1	.75 0	0	0	1	0 0	0	3	0	7 0	0 20	0	505 0	518	0 2	28 0	150	0										
	MAÑANA 300 301 302 303						TARDE						NOCHE						MAÑAI	NA					TAF	RDE						OCHE														
	300 3	302	303			300	301 302	303				300	301 30	303				30	31	32 3	3			30	31	32	33					32	33													
	151 7		0				461 18	_				181	582 1	15 0				996	0 1					910	_		0				956 0	007	0													
X4	204 7	92 16	0		X4	224	532 28	0			X4		608 2	20 0			X4	-	0 1	512 0			X4	1000	0	1092	0		Х	4	1292 0	996	0													
F.H.P	0.74 0	.9 0.56 #	###		F.H.P	0.67	0.87 0.64	####		- 1	F.H.P	0.57	0.96 0.7	75 ####			F.H.P	0.63 #	#### 0	.64 ###	#		F.H.P		####	0.78 #	###		F.F	I.P	0.74 ###	# 0.87	####													
																							4 4	1																						

101

Note																										AF	ORO	VEHIC	CULA	R(SEN	TIDO	:E-O)																											
The column The							R DE	BURG	SOS																																															-	-		-
Control Cont	FECHA: VI	RNES	5 14 DE	JUNIC	DEL	2019			_	_					_																																				_	_		_		+	-	-	-
Second				NITO				RLIC		+	Λ.	AICPO			CA	MION			MO	TOTAVI		M	OTO	INEAL		_	ALIT	0			RLIC			D/I	ICPO			CAM	ION		MC	TOTA	/1	N	OTO	NEAL			A	CCESOS			TOTA	LDOD	MOVINA	ENTO	TAL DOE	NACOVIII	MENTO
Secondary Seco			_	_	2 20	3 20	_	_	12 20	13 2	_		_	13 20	_	_	_	3 20	_	_	203	_	-	_	203	_		_	23	20		22 2	3 20	_		23	20			23	_	_		•	_	_	23 1/4 H	IAL S				FHP		_	_	_	20 2	1 22	IIILITIO
See	06:00 06:15	T.			_	-	_	_	_	-	_	_	2 0	_	_	_	_	_		_	0		_	_			_	0	_		_	_		1	_	0		14	0	_		_	0		_	_	_	_	_	110101	_		0				6 79	_	0
Section Sect	06:15 06:30		0 (5 5	0	0	0	(0		0 0	0 0	0	0	2	2	0	0	8	14	0	0	4	3	0 1	.8	46	0	0	0 () (0	0	1	0	0	2	9	0	0	63 38	3 0	0	12	14	0) 24	17		885	T		0	20	24	0 '	5 108	3 0	0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	06:30 06:45		0 !	16	0	0	0	(0	() 1	. 1	. 0	0	2	6	0	0	14	24	0	0	12	8	0 1	7	54	0	0	0 () (0	0	1	0	0	4	11	0	0	53 5	L O	0	17	11	0	30	08		1014			0	34	55	0 '	31 128	3 0	0
See	06:45 07:00		0 1	5 8	0	0	0	(0	() 3	1	. 0	0	2	3	0	0	21	59	0	0	12	15	0 2	4	66	0	0	0 () (0	2	0	0	0	2	4	0	0	70 74	1 0	0	24	22	0) 42	28	1196	1306	3903		0	54	86	0 1	22 166	0	0
Series Methods 1	07:00 07:15	2	0 2	2 25	0	0	0	(0	() 1	. 1	. 0	0	5	1	0	0	41	70	0	0	16	19	0 7	5 1	100	0	0	0 () (0	0	2	0	0	2	8	0	0	169 75	0	0	33	39	0) 70)4	1687	1888	5093		0	85	116	0 2	79 224	1 0	0
See	07:15 07:30	ΔÑ	0 4	1 35	0	0	0	(0	(0) 1	l 0	0	5	5	0	0	84	100	0	0	25	40	0 7	0	65	0	0	0 () (0	0	1	0	0	4	4	0	0	140 7:	L 0	0	60	58	0) 80)9	2249	2910	7118	0.61	ί2 <mark>0</mark>	155	181	0 2	74 199	0 (0
See	07:30 07:45	Ž.	0 2	7 28	0	0	0	(0	() 1	1	l 0	0	5	6	0	0	42	55	0	0	21	40	0 5	0	73	0	0	0 :	L O	0	0	1	0	0	5	10	0	0	110 43	3 0	0	40	62	0	0 62	21	2562	2330	8434	0.72	25 0	96	130	0 2	05 190	j 0	0
84 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	07:45 08:00	<u>^</u> L	_	_		0	0	(0	() 1	1	٥ ا	0	5	2	0	0	_		0	_	_	35		_	_	0	0	0 :	1 0	0	0	2	0	0	7	12	0	0	120 69	0	0	30	44	0					9406	0.80)8 0	103	150	0 1	97 222	0	0
Section Sect	08:00 08:15	L	0 2	9 29	0	0	0	(0	(0 0) 1	١ 0	0	7	4	0	0			0	0	18	40		_	_	0	0	1 () (0 0	0	3	0	0	6	16	0	-			0	45	76	0					10001	0.85	i9 <mark>0</mark>	101	159	0 1	97 291	. 0	0
0 2 3 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	08:15 08:30	L	_	_	_	_	_	_	0	_	_	_	L 0	_	_	_	_	_			0							_	_	_	_	_	_	+	_	-	-	_	_	_	_	_	0	_	_	_					_	ㅡ	0	106	78		_	0	0
12. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		L	_	_	_	_	+	_	. 0	() 1	. 0	0	_	_	_	_	_	_	\rightarrow	0	_	\rightarrow	_	_	_	-	0	_	_		0	_	_	0	0		-	0	_	_	_	0	_	_	0	_	_	_		8956	Щ.	0				_	-	0
13.1 12.1 12.1 12.1 12.1 13.1 13.1 13.1			_	_	_	0	-	_	0	-) 1	1	. 0	Ť	-	_ ~	_	-	_	_	0	_	_			_		0	0	0 () (0	·	<u> </u>	0	0		_	0	_	_	_	0	_	_	0					8769	₩	0			_	_	0	0
28. 1 1 2 1 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2		H	_	_	_	0	_	_	0	-	_		0	_	_	_	_	_	_	_	0	$\overline{}$	_	_	_	_	_	0	0	1 :	. 0	0	_	_	-	0	_	_	0	_	_	_	0	_	_	-		_	_		₩	₩	0		٠.			0	0
24 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		H	_	_	_	-	+	_		+			. 0		-		-		_	_	0	_	_	_	_	_	_	0	_	_			_	-	+-	+-		-	0	_	_	_	0	_	_	_		_			\vdash	₩		112	81			_	0
143 134 134 135 134 134 135 134 134 134 134 134 134 134 134 134 134		H	_	-	-	_	-	_	0	_	_	_	. 0	_	_	_	-	_	_	_	0	$\overline{}$	\rightarrow	_	_	_	_	0	_	_) 0	_	4	0	0	_		0	_	_	\rightarrow	0	_	_	_					0400	₩	- 0	120	80			10	0
134 134 134 134 134 134 134 134 134 134		H	_	_	_	-	-	_) 0	+	-		. 0		-	_	_	_			0			_	_	_	_	0	_	_	_) 0	_	1	0	0	_	-	0	_	_	\rightarrow	0		_	_		_		_	0.00	_	0				_	10	0
381 148				_	_	_	+	_	_	_	_	_	_	_	-	_	-	_	_	\rightarrow	0	\rightarrow	\rightarrow	_	_	_	\rightarrow	-	_	_	_		_	-	-	-	_	-	0	_	_	_	0			_					_	-	22 0	116				10	0
143 143 143 143 143 143 143 143 143 143		\neg \vdash	_		_	Ť	_	_	_	_	_	_	_	_	_	_	_				0	$\overline{}$	_	_		_	_	-	_	_	_	_		-	-	-		\rightarrow	-	_	_	_	-	_	_	-	_	_	_			_	_	105	33			10	-
May		···	_		_	_	-	_	_	_		_	_	_	-		_				0	$\overline{}$	\rightarrow	-				-	_	_	_	_	_	-	-	-		-	-	_		_	-	_	_	-		_	_			0.00						10	0
14.50 14.5		_	_	_	_	_	_	_	_	_	_			_	_	_	_		_		0	$\overline{}$	\rightarrow	_				-	_	_	_	_	+-	-	-	-	_	-	_	_	_	_	-	_	_	_			_						-			10	0
H-30 448 548			_		_	0	_	_) 0		0 0	$\overline{}$. 0	0	_	_	_	0	_		0	_	_	_		_	_	0	_	_) () 0	0	1	0	0	_	_	0	_		_	0	_	_	0					9574		0	90	94	0 1	94 186	0	0
Fact Single Section Fact Single Fact			0 2	1 19	0	0	0) 0		0 0) 1	1 0	0	6	1	0	0	_	_	0	$\overline{}$	\rightarrow	_	_	_	_	0	0	0 () (0	1	2	0	0	3	5	0	0 :	102 7:	L 0	0	_	_	0		_	2305	2040	9373		0	93	98	0 1	62 168	3 0	0
173 1736 1736 1736 1736 1736 1736 1736 1	14:45 15:00		0 2	7 9	0	0	0	() 0	(0 0	0	0	0	4	1	0	0			0	$\overline{}$	\rightarrow	_				0	0	0 () (0	0	2	0	0	0	-	0	0	112 4	3 0	0		45	0) 53	32	2234	1879	8653		0	85	71	0 1	90 186	j 0	0
17.0 17.8	17:00 17:15		0 3	5 10	0	0	0	(0	() 4	1	. 0	0	4	6	0	0	54	39	0	0	33	26	0 4	3	76	0	0	0 () (0	0	2	0	0	1	15	0	0	90 59	0	0	39	39	0	57	77		1817			0	131	82	0 1	73 191	0	0
17.5 18.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0	17:15 17:30		0 3	4 16	0	0	0	(0	() 1	. 0	0	0	2	4	0	0	37	48	0	0	23	19	0 5	4	80	0	0	0 () (0	0	2	0	0	2	11	0	0	135 4	1 0	0	36	45	0							0	97	87	0 2	27 182	. 0	0
1	17:30 17:45		0 3	4 22	0	0	0	(0	() 1	0	0	0	5	1	0	0	48	45	0	0	32	27	0 4	5	56	0	0	0 () (0	0	2	0	0	6	15	0	0	101 4	0	0	32	28	0) 54	1 5		2048			0	120	95	0 1	84 146	0 ز	0
18.1 18.3 S O S S S S S O O O	17:45 18:00	L	0 5	5 18	0	0	0	(0	() 2	1	. 0	0	5	4	0	0	52	53	0	0	40	28		_	_	0	0	0 :	. 0	0	0	1	0	0	5	12	0	0	115 50	0	0	34	38	0) 64	15	2360	2473	8262	0.76	i0 0	154	104	0 2	04 183	j <u>0</u>	0
18-30 18-85	18:00 18:15			_	_	0	0	(0	() 2	! 1	١ 0	0	7	6	0	·	_		0	_				_	_	0	_	_) (0	_	_	0	0	1	11	0	_		_	0		_	0	_	_			9009	0.82	29 0	142	124	_	_	1 0	0
1845 1900 91.5 90.0 91.5 90.0 91.5 90.0 91.5 90.0 91.5 90.0 91.5 90.0 91.5 90.0 91.5 90.0 91.5 90.0 91.5 90.0 91.5 90.0 91.5 90.0 91.5 90.0 91.5 90.0 91.5 90.0 91.5	18:15 18:30	ģL			_	0	-	-	0	(_	_	. 0	0	5	_	-	0	_	$\overline{}$	0	-	_	_		_	_	0	-	_		0	0	0	0	0	-	-	0	-		_	0	_	_	0			_		9803		-					0	0
1900 1915 1915 1916 1915 1916 1915 1916		Ħ_		_	_	0	_	_		(_		0	0	1	_		0	_	_	0	_	_					•	_			0	1	-	0	0			0	_	_	_	0		_	_					10134	0.93	í2 <u>0</u>		-0.			. 0	0
1935 1936 1938			_	_	_	_	_	_	_	_	_	_			-	_	-	_	_	\rightarrow	0	$\overline{}$	\rightarrow	_	_	_	_	-	_	_	_		_	-	-	-	-	-		_	_	_	0	_	_	_		_			9790	Щ	0			_	_	10	0
19-92 19-95		_	_	-	-	_	+	_	_	-	_	-	0	Ť	+-	_	_	-	_	\rightarrow	0		_	_	_	_	_	_	_	_	_	-	_	+-	-	0		-	_	_	_	_	0	_	_	_	_				_	-	0	_	_	_	_	_	0
19.45 20.00 0 30 30 30 0 0 0 0			_	_	_	0	+	+	0	+) 1	1	0	0	1	1	0	_	_	\rightarrow	U	_	_	_	_	_	_	U	_	_) (0 0	_	0	U	U	0	7	0	-	_	_	U	_	_	-		_				_	U		_		_		U
H.PIMARIANA 0 110 129 0 0 0 0 0 0 0 0 0				_	_	0	+	+) 0	+	1 1	1) 0	0	1	1	0			\rightarrow	0	_	_	_	_	_		0	-) 0	Ť	2	0	0	1	2	0	-		_	0	_	_	-	_					_	0			_	_	_	0
H-PITABOE; 0 130 80 0 0 0 0 0 0 1 1 1 0 0 18 17 0 0 125 134 0 0 0 0 0 0 1 1 1 0 0 18 17 0 0 125 199 0 0 151 98 0 155 286 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 0 0 0 1 0		_	_	_	_	0	Ť	_	_	+	ר ו	0 4	, <mark>U</mark>	0			0	Ť	_	_	0	_	-	_	_	_	_	0	-	_) (U	-	0	0	-	_	0	_	_	_	0	_	_	_	_	. כנ	2000	1/44	/338	-	U	ου	/1	<u>U</u>	++ 100	<u> </u>	U
H-P(NOCHE) 0 205 134 0 0 0 0 0 5 134 0 0 0 0 0 0 10 10 10 10 10 10 10 10 10	_ `	-			_	0	·		Ť	1) 2) 1	1	, U	0	_	_	_	_		0.0	Ü	·		115	_	_		0	<u> </u>		· ·		2	·	_	ř		72		0	T/0 2/	•	0			_	_	-			+	-	+	-	\vdash	+	+	+	+
MAÑANA TARDE NOCHE		-			_	0	_	_) ()	() 5	4	1 0	0	_	_	·	_			0	0		98	0 1	55 2	286	0	0	0 1			1	7	Ť	0	10	42		0 4	446 20	-	0	180							_		+		\Box	+	+	_	
200 201 202 203 203 203 204 205 205 205 205 205 205 205 205 205 205		_				_	Ť							_				_	+-			_												_	Ť	-						-	1	-00			_						_			\pm		_	
0 455 620 0 0 488 404 0 0 536 496 0 X4 0 536 496 0 X4 0 536 496 0 X4 0 644 496 0 X4 1096 1164 0 0 X4			М	٩ÑAN	4			Ť		Г	T	ARDE			\top			П	N	OCHE						N	ΛΑÑΑ	NA						TA	ARDE						N	OCHE																	
X4 0 620 724 0 X4 0 536 496 0 X4 0 0 536 496 0 X4 0 0 536 496 0 X4 0 644 496 0 X4 0 696 1 164 0 0 X4 1096 1164 0 0 X4 1992 740 0 0 X4 1992 740 0 0 X4 1994 820 0 0 0			200 2	01 20	2 20	3				2	00 20	01 20	02 20)3	Т			20	0 20	1 202	203					20	21	22	23				20	21	22	23					20 2	22	23																
			0 4	5 62	0 0					(0 48	88 40	04 0					0	59	4 451	0				8	73 9	902	0	0				874	657	0	0					792 73	9 0	0																
	X		0 62	72	4 0					_			0 0				X4	_	_	4 496	0					96 1	164	0	0						_				Х4	_		_																	
F.H.P	F.H	Р #	### 0.	73 0.8	6 ###	#			F.H.P	##	## 0.9	0.8	31 ###	#		F	.H.P	###	# 0.9	2 0.91	#####			F.H.I	P 0	.8 0).77 #	### ##	###			F.H.P	0.88	0.89	####	####			F.H.I	P (0.88	9 ###	####																

																								AFOF	O VEH	IICUL	AR(SEI	NTIDO:	:0-E)																						\top		Т	
UBICACION:					R DE B	URGC	S																																															
FECHA: VIERN	NES 14	DE JUN	IO DE	2019																																																		
																										_																									_			
HORAS DE		AUT	_	_	_	US			_	CRO		_	_	ΛΙΟΝ			мото			MOT	O LIN			_	JTO			BUS		_	MICE	_		CAM	_			TOTAX	_	_	TO LIN		TOTAL	SUN	ACCESC 1/4	TOT		IP .	_	MOVIMIE			R MOVIM	IENTO
CONTROL		401	402 4	03 40	0 401	402	403	400	401	402	403		401		403	_	_	402 4	03 4	00 4	_	2 403	3 4	_		43	40	41 4	42 43	_	41	42 4	3 40	41	42	43		1 42	43		41 4	2 43	1/4 HOR	RA HOP	RA HORA	A HO	RA	40	0 401	402	403	40 4	1 42	43
06:00 06:15	15	_	0	0	_	0	0	0	1	0	0	0	3	0	0	13	_	0	0	_	0	0	0	_	10		-	1 0	0	0	0	14 0	0	7	_	-	_	30	0	_	0 5	_	255		698	_	┷		. 33	0	0 /	0 13		0
06:15 06:30	22		0	0	1	0	0	1	2	0	0	1	-	0	0		16	0	9			0	0	-	_	0	0	0 0	0	_	_	0 0	0	\rightarrow	_	0	0 38	_	0	_	1 17	_	319		885	_	┷	59		0	0 /	0 15	62	0
06:30 06:45	13		0	0	0	0	0	1	0	0	0	3	_	_	0	34		0		3 1	_	0	0			_	_	0 0	_	_	_	1 0	0	\rightarrow	_	-	0 46		_	_	0 13		338		1014		┷	64		0	0 /	0 16		0
06:45 07:00	10	_	0) 1	_	0	0	0	1	0	-	2	_	-	-	43	_	-	0 8	_	_	_	0		_		_	0 0	_	_	_	0 0	0		_		_	74	_	_	4 20	_	359					64		0	0 /	0 13		_
07:00 07:15 Z	15	_	0	0	0	0	0	1	0	0	0	2			0	65	_	0	_	1 1	_	0	0	_	-	0	_	2 0	_	-	_	0 0	0	17	1	0	0 62	_	0	_	9 17	_	477	_		_	_	104	_	0	0 /	0 16	_	_
07:15 07:30	20	_	0	0			0	1	-	0	0		_		0	75	_	0 (0 2	_	0	0	_	30	0	0	2 1	0	0	2	0 0	0	8	3	0		110	0	_	3 44	_	621	179		_	18 0.6		_	0	0 /	0 17	77 188	0
07:30 07:45	40	_	0) 1	0	0	0	_	2	-	0	2	-	0	0	85		0 (8 3		0	0	_	49	0	0	0 0	0	-	-	1 0	0	11	_	0		75	0	_	3 40	_	608			_	34 0.7			0	0 /	0 16	8 169	0
07:45 08:00	45		0	0	_	0	0	_	1	-	0	5	1	0	0	90	_	0 (9 3	_	0	0	_	56	0	0	0 0	0	-	-	1 0	0	12	0	0		90	0		8 30	_	741	244		_		808 199	_	0	0 /	0 25		0
08:00 08:15	50	_	0	0	_	0	0	_	1	_	0	1	3	0	0	80		0 (8 2	_	0	0	_	70	0	-	0 0		_	-	0 0	0	11	_	0		75	0	_	7 45		688	265						0	0 /	0 21		_
08:15 08:30	-	12	0		_	0	0	2	0	0	0	3	_	0	0	80	_	0		2 1		0	0	_	59		_	0 0	0	0	2	0 0	0	5	2	0	_	2 91	_	_	6 48	_	692	272				151		0	0 /	0 27		_
08:30 08:45	41		0	0	0	0	0	0	2	0	0	5	4	0	0	65	_	0		4 2		0	0			0	0	0 0	0	0	3	1 0	0	10	1	0		2 59	0	_	2 49	_	680	280				145		0	0 /	0 27	70 165	0
08:45 09:00	63		0	0		0	0	2	1	0	0	6	6	0	0	85	_	0		6 2	_	0	0	88	_	0	-	0 0	_	_	-	0 0	0	8	0	0	_	5 59	0		2 68	_	778	283			59	202	_	0	0 /	0 25		_
12:00 12:15	-	47	0	0	_	-	0	2	-	-	0	3	-	0	0	50	\rightarrow	0	_	5 2	_	-	0	_	49		-	0 0	_	-	-	0 0	0	_	0	0	_	1 152	-	-	3 38	_	848		2145	_	—	125		0	0 /	0 37	_	_
12:15 12:30	45	_	0	0	_	-	-	1	2	_	-	5	_	-	_	80	_	-	_	2 3	_	_	0	-	98	_	_	0 0	_	-	\rightarrow	0 0	0	-		_	_	5 110	-	_	1 39	_	839	4	2096	_	_	163	_	0	0 /	0 30		_
12:30 12:45	45	_	0	0	_	0	0	0	1	0	-	4	-	0	_	85	_	-	_	5 3	$\overline{}$	_	0	_	96	_		0 0	_	0	\rightarrow	0 0	0	-	-	0		91	_	-	4 30	_	732		2061	_	4	189	_	0	0 /	0 21	12 220	_
12:45 13:00	45	_	0	0	_	0	0	3	1	0	_	4	-	0	-	95	_	_	_	0 4	_	_	0	+-	37	_		0 0	_	_	-	1 0	0	10	0	0	0 50	-	-	-	0 39	_	715	_		_	_	_	7 172	0	0 /	0 15		_
13:00 13:15	60	_	0	0	_	_	_	1	1	-	_	6	-			80	_	-		5 4	_	0	0	_	70	_		0 0	_	\rightarrow	_	0 0	0		_	_	0 94	_		-	9 37	_	764	305	_	_	_	202	_	0	0 '	0 21	_	_
13:15 13:30	75		0	0	_	-	-	1	1	0	-	3	-	-	-	95	_	0	0 5				0	-		-	_	0 0	_	_	_	1 0	0	_	1		0 69	_		_	5 48	_	838	304	_	_	_	_	_	0	0 1	0 19		_
13:30 13:45	60	_	0	_	0	-	-	_	0	-	-	5	-	-	-	80	_	0		0 5		0	0		50	-	_	0 0	_	_	_	1 0	0		_	-	_	80	_	_	9 36		749	306		_	_			0	0 1	0 18		_
13:45 14:00	85	_	0	_	0	-	_	_	0	-	0	_	-	0	-	90	_	0		0 6		0	0		39	-	_	0 0	_	_	_	0 0	0			-	_	106	_	_	2 26	_	905	_	-000		50 0.8			0	0 /	0 23		_
14:00 14:15		45		0	_	-	_	0	0	-	_	5	_	-	_	80	_	0		0 3		_	0		56		_	0 0	_	_	_	2 0	0		0	-	_	2 144		_	1 39		997	348			_			0	0 1	0 39	_	_
14:15 14:30	-	37	-	0	_	_	-	1	_	-	-	3	-	-	-	91	\rightarrow		_	5 3	_	_	0	_	103	_	_	0 0	_	-	-	2 0	0	_	_	_	_	70	-	-	8 22	_	705	_	_	_	_	215	_	0	0 1	0 18		_
14:30 14:45	55		0	Ť	_	-	_	3	0	_	_	4	_	_	_	85		_		0 1		_	0	_	70	_	_	0 0	_	_	_	0 0	0	_	_	_	-	113	-	-	7 64	_	803	341	_			197		0	0 /	0 25		
14:45 15:00	27	_	0	_	0	0	0	_	3	_	Ť	4	+-	0	0	80		0 1		0 3	_	0	-		72			0 0	_	-	-	1 0	0	_		0	_	122	0	_	7 27	_	710	321			53	157		0	0 1	0 19		_
17:00 17:15	23	_	0	0	_	0	0	0	0	0	_	0	_	0	0	34	_	0 1	0 2	-	_	0	0	_	60		_	0 0	_	0	_	0 0	0	_	0	0 1	_	83	0	-	4 26	_	510	+	1817	_	+-	78	_	0	0 (0 22		_
17:15 17:30	31	_	0	0	_	0	-	1	-	0	_	3	_	0	_	85		-		8 4		_	0	_	68		_	0 0	_	_	_	0 0	0		-	_		93	_	_	9 17	_	683	+	1924	_	+-	158		0	0 (0 19		_
17:30 17:45	47		0	0	_	0	0	3	_	0	0	5	-	0	-	90	\rightarrow	0		3 2		0	0		45	_	_	0 0	_	_	_	1 0	0	-		0	0 98	_	-	_	5 19	_	701		2048	_	-	178		0	0 1	0 26		_
17:45 18:00	55		0	0	_	-	0	_	0	_	0	5	_	_	_	95	_	0 1		0 3	_	0	0		115	0		0 0	_	-	_	3 0	0	_	0	0 1		74	_	_	4 35	_	777	267			62 0.7	_		0	0 1	0 23		_
18:00 18:15 Z	40	_	0	0			0	_	1	_	-	4	-	0	-	75	_	0 1		0 4	_	0	0	_	114	0	-	0 0	_	_	-	1 0	0	17	_	0	_	111	0	_	9 40	_	902	306			09 0.8		_	0	0 1	0 2/	76 267	_
18:15 18:30	70	_	0	0	_	_	U	0	0	0	0	4	0	_	-	74		0 1		5 3		0	0		101	U	_	0 0	_	_	-	2 0	0	-	0	0	_	2 102	0	_	7 25	_	905	328	_		0.9	_		-	0 1	0 31	-00	_
18:30 18:45 景	45		0	0	-	-	0	1	1	0	0	1	1	0	0	85	_	0		5 3		0	0		47	0	-	0 0	_	-	_	0 0	0		0	0	-	93	0	-	4 27	_	690 861	327	1 23/3		0.9	932 213		U	<u>u</u>	0 18	10,	_
18:45 19:00	70 55	_	0	1	_	-	U	1	_	_	-	2	-	-	_	85 82	\rightarrow	-		5 3 6 3		_	0		76			0 1	_	_	\rightarrow	0 0	0	13	_	_	_	109	_	_	7 39	_	765	333				166	_	U	0	0 22		
19:00 19:15	42	_	0	0	_	0	0	_	0	0	0	-	-	0	0	\rightarrow	_	0 1	_	-	_	0	_	-	86			0 0	_	0	-	0 0	0	-	-	_	-		-	-	-	_	_	_		_		_	8 117	0	0 1	0 25		
19:15 19:30	-	-	0		0	0	0	0	0	0	0	0	-	0	0		60	0 1	0 5	$\overline{}$	_	0	0	-	-			0 0	_	-	-	0 0	·	13	0	_		_		_	2 30	_	729	304	_	_	_	_	_	0		_		_
19:30 19:45	45		0	1	0	0	0	0	2	0	0	0	_	0	0	36	_	0 1	_	5 1	_	0	0		114 51		-	0 0	_	-	\rightarrow	0 0	0	9	-	0		7 111	-	_	7 27	_	733	308			_	_	7 94	0	0 1	0 27		_
19:45 20:00 H.P(MAÑANA)		121	0	0	1	0	0	0	0	0	0	11	·	U	0		55 174	0 0	0 19	_	3 0	0	0	80	205	·	0	0 0	. 0	_		0 0	0	42	0	0 1	0 56	_	·	_	9 29	_	597	284	24 1744	4 79	٥٥	156	6 135	U	U	U 16	9 13/	0
H.P(MANANA)	285		0) 1	0	0	0	2	4	0	0	18	_	0	0		_		0 2		_	+	_	_	205	_	0 .	_	_	_	_	2 0 4 0	_	42		_	0 419	_			37 14		-	+	+	+	+	+	-	\vdash	+	+		
H.P(TARDE)	-	172	Ŭ		U	0	0	1	1	0	0	20	-	0	0	345	269		0 2		_	0	_	405	377	0		0 0	0		9	6 0	_	52	_	0	0 39	_	0	_	54 12	_	-	+	+	+	+	+	-	\vdash	+	+	+	
H.P(NOCHE)	210	1/2	U	, 0	U	U	U	1		U	U	20	0	U	U	329	209	U	U 2:	OU 12	-Z U	U	U	3/8	3//	U	U	0	U	U	9	0 0	U	52	1	U	0 39	380	U	U	12	U	_	+	+	+	+	+	-	\vdash	+	+		
		MAÑA	NΑ		+				TA	RDE							NOC	HE		+	+	+		MA	ŇANA		-	+	+		TARI	ne .					A1	OCHE		-	-	+		+	+	+	+	+	-	\vdash	+	+		
	_	401		n2	+			400		402	400	-				400		402 4	03	+	+	+	4	_	_	43	-	+	+	40	41	42 4:	2			-		1 42	43	-	-	+		+	+	+	+	+	-	\vdash	+	+		
	_	425	_	_	+			_		0	_	_				_		0 1	_	+	+	+	0	_	727	0	-	+	+	_	016	_	_			_	0 100		0	-	-	+		+	+	+	+	+	+	\vdash	+	+		
X4	-		0	_	+	,	(4	_	_	0	_	1		,	X4			0	_	+		X4	0	_	772	0	-	+	X4	_	588	_	-		Х4	_	0 100	_ 00-	_	-		+		+	+-	+	+	+	-	\vdash	+	+	+'	-
F.H.P	-	0.93 #	_	_	+		H.P	_		8 ####		Ħ							_	+		.H.P	_	-	0.94	_	+		r.H.P			0.84 ###	_		F.H.F	_	### 0.8		_	-	-	+		+	+	+	+	+	+	\vdash	+	+		
r.n.P	0.0/	U.35 #	*****	***		r.	ıı.P	0.9	0.78	******	""""			r.	II.P	0.33	U.0U I		mtt			.n.r	*****	U.61	0.54	******			.11.17	#### C	,04 L	J.04 ###	"		r.n.	###	m## U.8	1 0.03	******															

(ANEXO N° 10) HOJA DE AFORO VEHICULAR DE LA INTERSECCION (SABADO 15 DE JUNIO DEL 2019)

AFORO VEHICULAR(SENTIDO:S-N) **UBICACION:** ACCESOS AL PUENTE SEÑOR DE BURGOS FECHA: SABADO 15 DE JUNIO DEL 2019 MICRO **CAMION** МОТОТАХІ **MOTO LINEAL AUTO BUS** TOTAL POR MOVIMIENTO HORAS DE TOTAL SUMA TOTAL 102 103 1/4 HORA HORA CONTROL 101 102 100 101 102 103 101 102 100 101 102 103 100 101 HORA 100 101 102 103 06:00 06:1 Ω Ω Ω О Ω О O O О O O O O 06:15 06:3 О O 06:30 06:4 O O O О O O O O О Ω O Ω 06:45 07:0 O O O О O O Ω O 07:00 07:1 Ω Ω O O o O О 0.64 07:15 07:3 O 0.756 07:30 07:45 O Ω O O O O О O 0.84 07:45 08:0 O O 0.89 08:00 08:1 О О О O 08:15 08:3 O О Ω O 08:30 08:4 O O О O O O O O O 08:45 09:0 Ο Ω O O O О О O O 0 14 Ω 12:00 12:1 O О O О O О O O O O 12:15 12:3 O О О O O O O 12:30 12:4 O О O O O 12:45 13:00 O О O О O O O O O O 13:00 13:15 O O О О O О O O O O 13:15 13:30 0.87 13:30 13:45 О О O O 0.88 O О O O O O 0.906 13:45 14:0 14:00 14:1 O O O 0.935 O 14:15 14:30 O О О О 14:30 14:4 O O О O o O O O 14:45 15:0 17:00 17:1 О O О 17:15 17:30 O O О O О O O O 17:30 17:45 O O О О О О O O O 17:45 18:0 o O 0.842 18:00 18:1 18:15 18:30 0.910 o o O 0.94018:30 18:4 O O O О O O O O O O 18:45 19:00 O О О О О O 19:00 19:1 19:15 19:30 O O O О O О O O O o O O O 19:30 19:4 19:45 20:00 О H.P(MAÑANA) Ω O Ω H.P(TARDE) О 0 347 0 433 Ω H.P(NOCHE) MAÑANA **TARDE** NOCHE 101 102 103 101 102 103 101 102 103 0 923 0 o 0 1028 0 1080 О **X4** X4 **X4**

0.96

F.H.P

F.H.P

0.85 #### 0.87

####

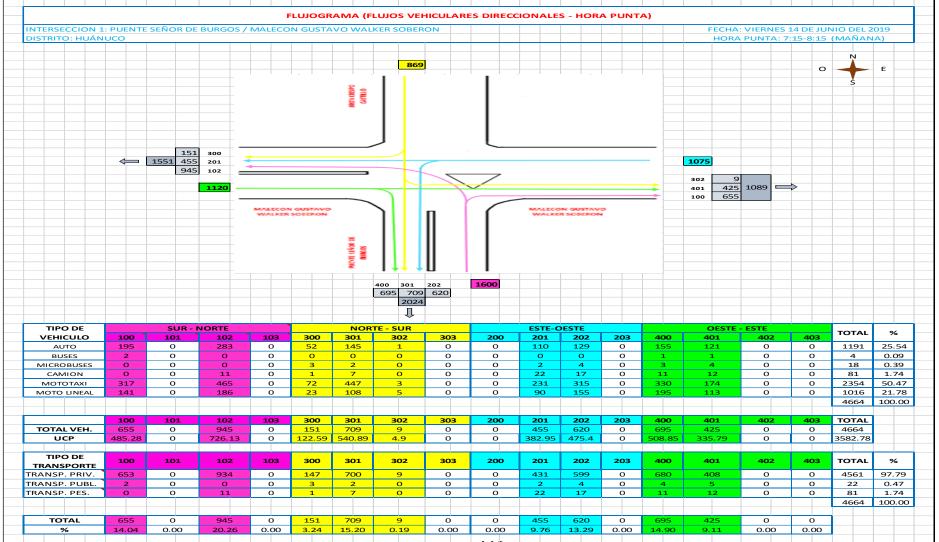
F.H.P

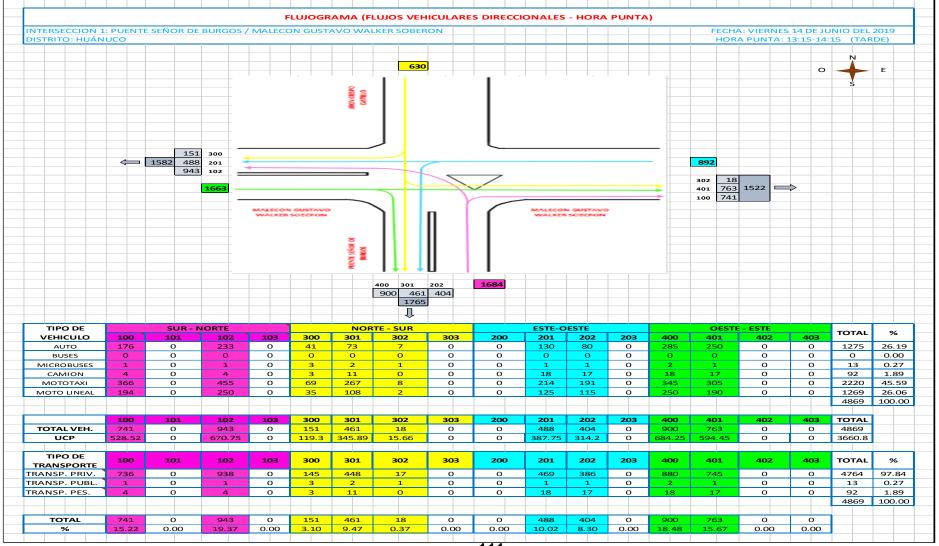
0.92 #### 0.9 ####

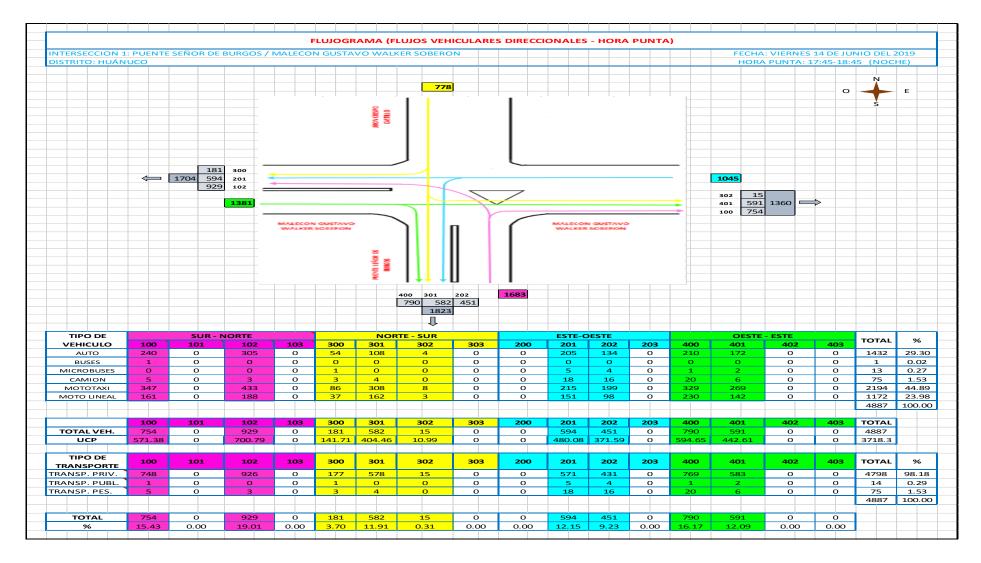
0.85

AFORO VEHICULAR(SENTIDO:N-S)

				~																								AFUI	(U VI	EHIC	ULAR	(SEIN	Про	J:IN-5	L																													_
UBICACION:					R DE B	URGO	DS																																																									_
FECHA: SABA	DO 15 [DE JUN	O DEL	2019							_	_	_	_	_	_	_			_	_					_	_	_	_	_				_						_	_								_	_		_			_									_
		_		_					_	_		_				_										_		_	_	_																									_	_			_	_	_			_
HORAS DE		AUTO		╙	_	US		┕	_	ICRO		┸	_	AMIO	_	4	_	10TO	_	4	M	OTO	INEA	L		_	UTO				BUS			_	MICR				AMIO	N		N	1010	TAXI		N	лото		_		AL SI		1/4	TOT		EMD -			OVIMIE		OTAL F	POR M	OVIMIEN	NTO
CONTROL	300	301	02 3	300	301	302	303	30	301	302	2 30	30	30	01 3	02 3	03 3	000	301	302	303	300	301	302	303	30	31	3	2 3	33	30	31	32	33	30	31	32	33	30	31	32	33	30	31	32	33	30	31	32	3	1/4 HC	DRA H	ORA	HORA	HOF	RA		300	301	302	303	30	31	32	33
06:00 06:15	2	10) (0	0	0	0	0	1	0	0	0	1	L ())	0	17	0	0	1	1	0	0	15	0	21	0	0	0 (0 0	0 (0	0	0	1	0	3	0 1	1	0	28	0	23	0	0	0	5	0	130)		698	1			3	30	0	0	46	0	51	0
06:15 06:30	0	11) (0	0	0	0	0	0	0	0	0	() ())	0	21	0	0	0	4	0	0	19	0	21	0	C	0 (0 0	0 (0	0	0	2	0	3	0 (0	0	38	0	36	0	4	0	13	0	172	2		885				0	36	0	0	64	0	72	0
06:30 06:45	0	6) (0	0	0	0	0	0	0	0	0	2	2 ())	2	31	1	0	1	1	0	0	26	0	29	0	С	0 (0 0	0 (0	1	0	0	0	4	0 3	3	0	52	0	46	0	8	0	15	0	228	3		1014	T			3	40	1	0	91	0	93	0
06:45 07:00	2	18) (0	0	0	0	0	0	0	0	1) ())	4	48	0	0	2	12	0	0	22	0	20	0	C	0 (0 1	1 (0	0	0	1	0	1	0 2	2	0	73	0	109	0	23	0	9	0	348	3 8	378	1306	390	03		9	78	0	0	119	0	142	0
07:00 07:15	8	29) (0	0	0	0	2	0	0	0	1	1	L ()) 1	8	78	0	0	2	10	0	0	44	0	29	0	(0 (0 0	0 (0	0	0	2	0	3	0 2	2	0	103	0	101	0	30	0	18	0	483	1 1	229	1888	509	J93		31	118	0	0	180	0	152	0
07:15 07:30	14	40	1 (0	0	0	0	1	0	0	0	0	1	L ()) 1	9 1	111	1	0	4	25	2	0	90	0	76	0	C	0 (0 2	2 (0	2	0	4	0	6	0 1	1	0	130	0	145	0	100	0	70	0	845	5 1	902	2680	688	88 0	1.643	38	177	4	0	328	0	298	0
07:30 07:45	18	34) (0	0	0	0	0	1	0	0	1	. 2	2 ()) 2	4 1	111	1	0	8	35	0	0	28	0	40	0	C	0 (0 (0 (0	0	0	1	0	5	0	7	0	134	0	110	0	50	0	45	0	655	5 2	329	2226	810	00 0	.756	51	183	1	0	217	0	203	0
07:45 08:00	\rightarrow	30) (0	0	0	0	0	1	0	0	0	2	2 ()) 1	5	90	1	0	6	20	1	0	29	0	30	0	(0 (0 0	0 /	0	0	0	0	0	2	0 3	3	0	100	0	86	0	34	0	26	0	489) 2	470	2235	902	J29 C	.842	34	143	2	0	165	0	145	0
08:00 08:15	\rightarrow	35		0	0	0	0	2	0	0	0	0	2	2 ()	_	4		0	_	5	\rightarrow	2	0	36	_		_	(0 (0 0	0 /	0	0	0	1	0	5	0 7	7	_	110	$\overline{}$	130	0	57	0	_	_	594	1 2	583	2429	957	70 C	.893	28	145	2	0	208	0	211	0
08:15 08:30	-	14	_	0	0	0	0	0	2	0	0	_	0	_	_		_	84			9	_	1	0	24	_	44	0	(0 (0 2	2 1	_	_	_	3	0	2	0 5	5		119	_	139	0	45	0		_	557	_	295	2102	899	192	_	_	114	7	0	_		219	0
08:30 08:45	\rightarrow	15	_	_	0	-	-	-	4	_	_	-	2	_	_	_	\rightarrow	67	\rightarrow	_	5	\rightarrow	\rightarrow	0	38	_	47	_	_	1 (_	_	_	0	_	0	_	4	_	_	_	100	$\overline{}$	103		_	0	_	_	508	_	148	2002		_	_		_	5	0	_	_	190	0
08:45 09:00	\rightarrow	19	_	0	-	-	-	1	-	_	-	0	_		-	_	_	53	\rightarrow		\rightarrow	15	0	0	17	0	34	_	_	_	0 0	_	_	-	_	3	0	_	0	_	_	102	$\overline{}$	107	0	30	_	32	_	455	_	114	2091			_			5	_	155		183	0
12:00 12:15	_	16	_	0	÷	_	-	÷	1	_	_	0	_	2 (_		7	_	1	_	_	32	0	0	29	0	48	_	_	_	_	0 (-	-	0	n	7	_			99	_	158	0	50	_	33	_	568	_	.117	2001	_	= +		_	111	3	_	185		244	0
12:15 12:30	\rightarrow	14	_	0	-	-	+	1	-	_	_	1	_) (-	_	\rightarrow	62	-	_	-	35	0	0	29	0	_	_	_	_	0 0	_	_	-	-	1	n	6	_	6	_	71	$\overline{}$	108	0	49	_	46	_	499	_	- †	2011	_	+		_	111	1	_	155		_	0
12:30 12:45	\rightarrow	30	_	_	0	-	+	-	0	_	_	-		_	_	_	_	77	_	_	5	\rightarrow	0	0	38	0	_	_	_	_	0 0	_	_	-	-	\rightarrow	0	5	_	_	_	129	$\overline{}$	137	0	_	0	_	_	618	_	- †	2053	_	+	_	_	_	1	0	_	_	_	0
12:45 13:00	\vdash	20	_	_	0	-	-	-	1	-	+	-	2	_	_	_	_	60	-	_	9	\rightarrow	1	0	53	0	_	_	_	_	0 0		_	-	-	1	_	2	_	_	_	156	\rightarrow	170	0	_	0	70	_	74	_	432	2177	_	1/12	_	_	106	÷	_	283	_	_	0
13:00 13:15	\rightarrow	20	_	_	0	_	+	-	2	_	_	-	1	_	-	_	\rightarrow	77	\rightarrow	_	10	$\overline{}$	3	0	45	-	66	$\overline{}$	_	_	0 0	_	_	-	_	\rightarrow	_	2	_	6	_	114	$\overline{}$	88	0	_	0	53	_	620	_	484	2248	_	_	_	_	135	4	_	230	_	_	0
13:15 13:30 →	\vdash	12		_	0	-	-	-	0	-	_	+-	4	_	_	_	_	65	_	_	9	\rightarrow	1	0		0	_	_	_	0 (-	_	0	_	0	_	4	_	_	_	103	\rightarrow	116	0		0	_	_	54:	_	526	2364	_	342 0.	_	_		3		196		_	0
고	\rightarrow	21	_	_	-	-	-	0	-	-	-	2	_) (_		_	55	_	_	2	\rightarrow	1	0	28	-	-	_		_	0 0	_	_	_	_	0	_	4	_	3	_	111	0	_	0	_	0	_	_	518	_	426	2206			_	_	_	7	_	208	_	180	0
13:30 13:45	15	_		_	0	-	+	-	1	-	-	-	4		_	_	_	62	_	_	12	\rightarrow	0	0	56	_	50	_	_	0 (-	_	-	0	-	1	0	6	_	_	_	130	\rightarrow	150	0	-	0	_	_	630	_	309	2374				_	104	4	_	236	_	236	0
13:45 14:00	14	_	_	_	-	-	-	-	-	-	-	-	_	_	_		_	_	_	_	_	_	-	0		_	_	_		_	_	_	_	_	_	-	0	_	0 4	_	_	_	\rightarrow	_	0	_	_	_	_	_	_	307		_	_	_	_	129	4	_	_	_	201	0
14:00 14:15	-	_	_	_	0	-	_	-	1	_	_	-	3	_	_	_	8	_	_	_	12	_	0	0	45	_	55	_	_	_	0 0		_	_	_	0	0	_	_	_	_	120	$\overline{}$	105	0	_	0	_	_	618	_		2536	_	_	_	_	_	4	_	228	_	_	0
14:15 14:30	-	20	_	_	0	-	+	-	0	_	-	-	. 2	_	-	_	\rightarrow	90	\rightarrow	-	10	\rightarrow	0	0	36	_	_	_	_	_	0 0		_	-	-	2	0	_	0 5	_	_	125	$\overline{}$	116		_	0	_	_	612	_	378	1989	_	_	_	_	131	+ +	0	_	_		<u>.</u>
14:30 14:45	\rightarrow	16	_	0	_		_	<u> </u>	1	-	-	-	2	_		_	_	75	_	_	8	\rightarrow	1	0	39	_	-	_	_		0 0	_	_	-	-	1	_	_	_	5	_	114	\rightarrow	122	0	40	_	_	_	538	_	398	1943	_		_	_	116	-	_	198		194	0
14:45 15:00	_	11	_	_	0	_	-	-	1	_	_	-	1	_	_	_	_	82	_	_	_	14	0	0	32	_	30	_	_	0 (_	_	_	-	_	0	_	1	_	_	_	84	_	85	0	_	0		_	439	_	207	1835	_	03	_	_	109	1		162		-	0
17:00 17:15	0	\rightarrow	_	0	+ -	-	-	-	1	-	-	0	_) (_	_	\rightarrow	69	\rightarrow	-	\rightarrow	20	0	0	44	-	48	_	_	_	0 0	_	_	0	-	1	_	5	_	_	_	152	$\overline{}$	133	0	63	_	46	-	640	_	-	1852	_	+	_	_	114	-	_	264	_	232	0
17:15 17:30	\rightarrow	20	_	_	0	+	-	1	-	-	_	-	3	_	_	_	_	50	-	_	5	\rightarrow	1	0	27	-	-	_	_	_	0 0		_	-	_	0		0			_	76	\rightarrow	107	0	36	_	20	_	428	_		1917		+	_	_	95	6	0		_		0
17:30 17:45	\rightarrow	29	_	_	0	-	_	-	0	-	_	-	2	_	_	_	_	66	_	_	9	\rightarrow	0	0	64	0	-	_	_	_		0 (_	0	_	0	_	0		_	_	147	$\overline{}$	142	0	_	0	40	_	678	_	_	2046	_	+	_	_	124	3	_	287	_	240	0
17:45 18:00	31	-) (_	0	-	-	Ť	0	-	-	-		_	_	_	_	80	_	_	15	\rightarrow	\rightarrow	0	30	_	35	_	_	_	0 0	_	-	-	0	-	0	2	-	_	_	100	_	95	0		0	-	_	575	_	321	2406	-	221 0.			145	5	_	182	-	163	0
18:00 18:15	10	-	1 (_	0	-	_	-	0	_	_	-	3			_	_	65	_		7	_	0	0		0	_	_		0 (_	0 (_	_	0	_	0	1	-	_	_	106		140	0		0	_	_	620		301	2490					133	4		212	_	229	0
18:15 18:30	-	28		_	0	-	_	-	0	_	0	-	1	_	_	_	_	67	_	_	4	\rightarrow	\rightarrow	0	86	_		_	_	_	-	0 (_	0	-	0	0	2		_	_	130	$\overline{}$	135	0	65	_	38	_	667	_	540	2631				_	-0.	2	0		_	226	0
18:30 18:45	_	35	_	_	0	-	_	_	0	_	0	_	C		_		_	78	_		11	_	0	0	50	_	30	_	_	_	0 1		-	-	0	_	0	2	-	_	_	100		148	0	58		44	_	652	_	514	2361				_	152	4	_	210	_	249	0
18:45 19:00	_	22		_	0	-	_	-	0	_	_	-	. 3	_	_	_	_	56	_	_	3	_	0	0		0	-	_	_	_	_	1 (_	-	-	0	_	2	_	_	_	45	_	180	0	42	_	_	_	532		471	2090						2	0	_		265	0
19:00 19:15	\rightarrow	18	_	_	0	-	-	<u> </u>	0	-	-	-	1	_	-	_	_	49	-	_	0	\rightarrow	\rightarrow	0	82	_		_	_	_	0 1	_	-	-	-	1	_	0	-	_	_	183	\rightarrow	186	0	58	-		_	739	_	590	2157	_	_	_	_		1	0	_			0
19:15 19:30	\rightarrow	12	_	0	+ -	-	-	0	-	-	0	-	1	_	-	_	\rightarrow	50	-	_	9	\rightarrow	0	0	46	0		_	_	_	0 1		_	-	-	1	0	_		0	_	130	$\overline{}$	102	0	64	_		_	538		461	1932						3	0			-00	0
19:30 19:45	_	22	_	1	0	-	-	0	-	-	0	0	2	2 ()		9			_	13	\rightarrow	0	0	62	0	-	_	_	_	0 2		0	0	0	1	0	_		3	_	160	_	159	0	57	0		_	698		507	2007	_	-		_	114	1		281		276	0
19:45 20:00	10	_	1 (0	0	0	0	1	0	0	0	1	1	L ()	_	_	62	0	_	_	28	1	0	43	0	47	_	C	0 (0 0	0 (0	0	0	0	0	2	_	0	0	99	_	102	0	39	0	_	_	498	3 2	473	1744	784	40		27	100	2	0	183	0	186	0
H.P(MAÑANA)	_	139	1 (0	0	0	0	3	2	0	0	1	. 7	7 ()) 7	2 3	392	3	0	23	108	5	0	183	0	191	_	C	0 (0 2	2 (0	2	0	6	0	18			0	474	0	471	0	241	0	169	0															
H.P(TARDE)		73	7 (0	0	0	0	3	2	1	0	3	1:	1 ()) (9 2	260	8	0	35	106	2	0	163	0	196	0	C	0 (0 0	0 0	0	0	0	1	0	16	0 1	.7	0	464	0	459	0	225	0	145	0															
H.P(NOCHE)	54	108	4 (0	0	0	0	1	0	0	0	3	. 4	1 ()) (8	36 2	290	8	0	37	162	3	0	216	0	175	0	C) (0 1	1 (0	0	0	3	0	7	0 2	.0	0 -	436	0	518	0	228	0	150	0															
	1	иañai	IΑ						TA	ARDE								NOC	HE							MAÍ	ÑANA	ı							TARD	DE							NOC	HE																				
	300	301	02 3)3				30	301	302	2 30	3				3	00	301	302	303					30	31		2 3	33					30	31	32	33					30	31	32	33																			
	151	648	9 (151	452	18	0					1	81	564	15	0					918	0	857	0		T			8	368	0 8	318	0					887	0	867	0									Т										
X4	204	732	6 (1	X4	224	516	28	0				Х4	3	320	608	20	0			X	1	1312	0	119	2 0	ī	\top		Х4	Ĝ	944	0 9	944	0			Х4	1	1132	0	996	0									Т										
F.H.P	0.74	0.89	56 ##	##		F.	H.P	0.6	7 0.88	_	4 ###	_			F.H.P	0.	.57 0).93 (0.75 #	###			F.H	_	0.7	####	0.7	2 ###	##	\top		F.H.P	, 0	.92 #	### 0).87 #	###			F.H.P	, (0.78	****	0.87	####									\top	\top	\neg			\neg	\neg	\top			\neg
				_												_				_				-		_	_				_		N _E				_									•				-						_				_	_			

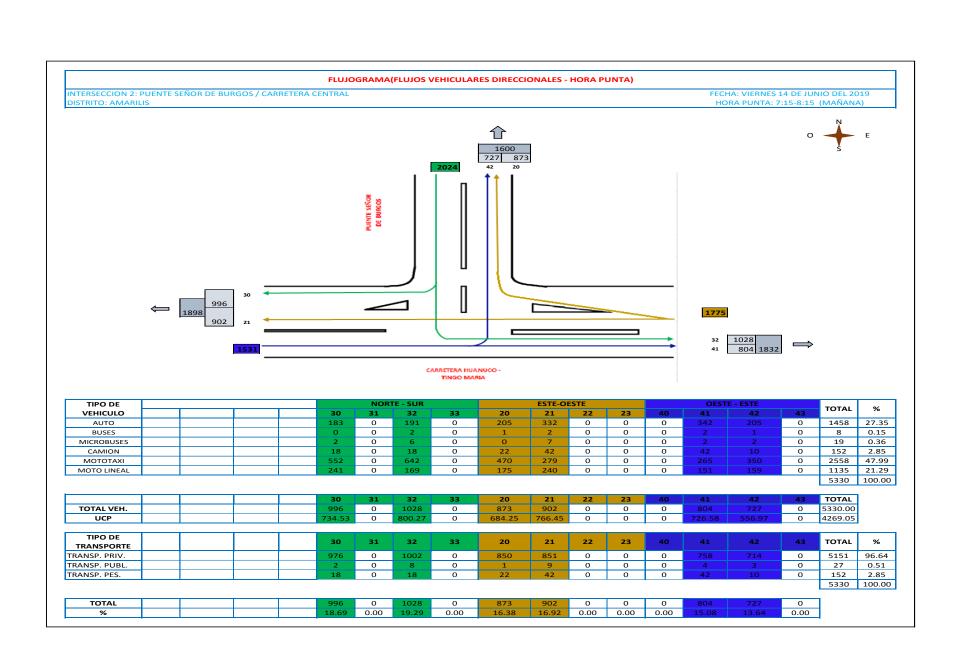

106

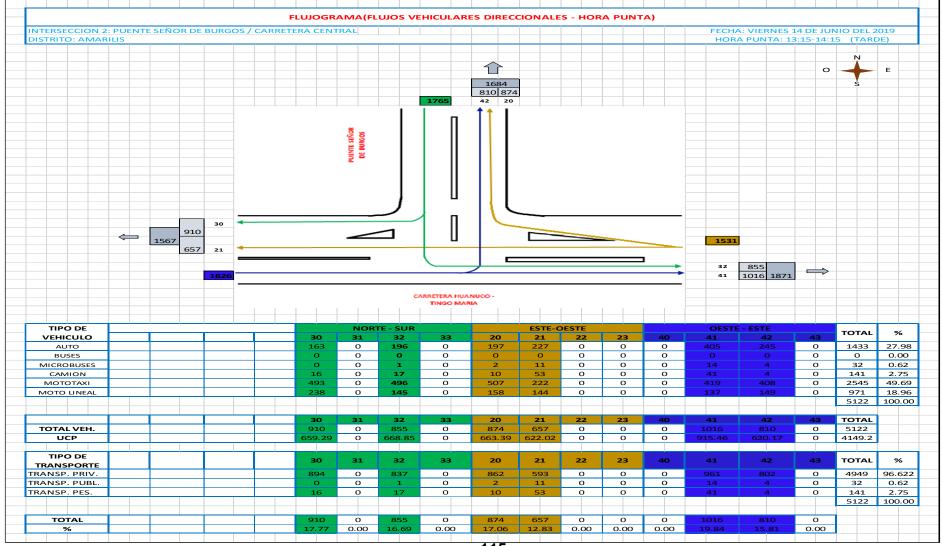

																						<u> </u>	AFOR	O VEI	IICUL	AR(SI	NTIDO	0:E-0)																								П	П	
UBICACION: A					BUR	GOS																																																	
FECHA: SABAI	00 15 D	E JUNI	DEL 2	019																																																			
																																																					\perp		
HORAS DE		AUTO			BUS		4	M	IICRO			_	ΛΙΟΝ		_	мот			_	TO LIN	_		ΑL				BUS				MICRO			CAN	NOIN		MO	TOTAX		_	OTO LI		тот	AL SI	JMA 1		TOTAL	EHP	_	POR MO	VIMIEN	TOT OT	AL POR N		_
CONTROL	200	201 20	203	200 2	01 2	02 20	3 20	00 20	202	2 20:	3 20	0 201	202	203	200	201	202	203	200 2	01 2	02 20:	4		_	23	20	21	22	23	20	21	22 2	23 2	20 21	22	23	20 2	1 22	23	20	21	22	23 1/4 H	ORA H	ORA HO	DRA	HORA		200	201	202 2	03 2	21	22	23
06:00 06:15	_	9 10	_	0	0 (0 0	0	0	2	0	0	4	5	0	0	15	18	0	_	3 2	_	_	34	_	0	0	0	0	0	2	1 (0 0		14	_		1 23	_	0	4	7	0 (21	_	_	98			0	31	37	0 66		0	0
06:15 06:30	_	6 5	_	0	0 (_	0	0	0	0	0	2	2	0	0	8	\rightarrow	0	_	4 3		_	46	_	0	0	0	0	0	_	_	0 0		9	_		3 38	_	0	12		0 (24			85			_		24	95		0	0
06:30 06:45	_	5 16	_	0	0 (0 0	0	1	1	0	0	2	6	0	0	14	\rightarrow	0	_	2 8	_	_	54	0	0	0	0	0	_	-	_	0 0	_	11	_	_	3 51	_	0	17	_	0 (30	_	_)14			0	_	55	91	_	_	0
06:45 07:00	_	16 8	_	0	0 (0 0	0	3	1	0	0	2	3	0	0	21	59	0	_	2 1	_	_	66	_	0	0	0	0	0	2	0 (0 0	2	4	0		0 74	_	0	24	_	0 (42		_	306	3903		0	54	86		2 166		0
07:00 07:15 ≤	_	22 25	_	_	0 (_	0	_	_	_	0	5	_	0	0	-	_	0	_	6 1	_		100	_	0	\rightarrow	_	0	_	0	_	0 0		8	_		59 75	_	0	33	_	0 (70	_		388	5093		0		116		224		0
07:15 07:30		41 35	_		0 (0	0	_	-	0	5	_	0	0	84		0		5 4			65		0	0	-	0	-	0		0 0	_	4	0		10 71		0	60		0 (77			580	6888	0.643	0		81		199	0	0
07:30 07:45	_	27 28	_		0 (0	1	_	_	0	5	_	0	0	42	_	0	_	1 4	_		73		0	0	_	0	_	0	_	0 0	_	10	_		00 43		0	40	_	0 (61	_	_	226	8100	0.756	0	_	130	_	5 190	0	0
07:45 08:00		13 37	_		0 (0	1	_	_	0	5	_	0	0	55	_	0		6 3			94	0	0	0	_	0		0		0 0		12	0		20 69		0	30		0 (66			235	9029	0.842	0		50	_	7 222	0	0
08:00 08:15		29 29	_		0 (_	0	0	_	_	0		4	0	0	47	_	0		8 4	_		88	0	0	_		0	_	0	_	0 0	_	16	_		00 96	_	0	45	_	0 (72	_	_	129	9570	0.893	0		44	_	7 279	_	0
08:15 08:30		33 16		_	0 (0	_	_	-	0	5	-	0	0	44	46	0		2 1		_	97	_	0	0		0	_	-	3 (_		1 12	_		03 71	_	0	57	_	0 (64			102	8992		_		78		242		0
08:30 08:45	_	25 14	_	-	0 :	_	0	1	0	0	0	+-		0	0	52	\rightarrow	0	_	0 1	_	_	87		0	-	-	0	_	_	1 (14	_	_	28 63	_	0	45	_	0 (62				8768		_		77		3 216	0	0
08:45 09:00		29 16			0 (0	1	1	0	0	5	_	0		31	_	0	_	5 1	_		67	0	0	0	•	0	-	_		0 0	_	20			39 87	_	0	48		0 (64			91	8624				88		2 233	0	0
12:00 12:15	_	32 11	_		_	0 0	0	2	_	-	0	1	-	0	_	36	\rightarrow	0	_	6 2	_		66		0	\rightarrow	_	0	_	0	_	0 0		11	_	_	03 44	_	0	36	_	0 (51			001			_	_	87	_	3 158	_	0
12:15 12:30	_	38 16		-	0 (0	-	_	-	0	7	-	0	0	-	\rightarrow	0	_	9 2	_		60		0	-	_	0	_	0	_	0 0		15	_	_	12 45	_	0	32	_	0 (54	_	_)11			_	_	81	_	3 163	0	0
12:30 12:45	_	30 15	_		0 (_	0	1	_	_	0	7	-	0	0	51	40	0	_	8 2	_	_	64	0	0	1	_	0	_	_	4 (_	_	11	0	_	11 58	_	0	44	_	0 (57	_	_)53			_	_	80	_	7 181	0	0
12:45 13:00	_	31 24	_	_	0 (0		_	_	0	<u> </u>		0	0	-	_	0	-	6 3	_		43	_	0	0	_	0	_	0	_	0 0	_	. 8	0	_	21 32	_	0	50	_	0 (58				8242		0	_	14	_	1 120	0	0
13:00 13:15	_	31 19	_	_	0 (\rightarrow	0	_	_	_	0	-	_	0	0	53	39	0	-	6 3	_		86	_	0	0	_	0	_	_	_	0 0		10	_		42 46	_	0	58	_	0 (66			248	8489		0	_	95	_	179	0	0
13:15 13:30 A		35 12				0 0	0	0	_		0	3	_	0	0	45	49	0		3 2			63	0	0	0	-	0	_	0	_	0 0		14	_		05 60		0	50	_	0 (59			364	8842	0.872	0	_	91	_	178	0	0
13:30 13:45	_	32 17	_	-	0 (0	- 0	-	_	0	-		0	_	-	\rightarrow	0	0 2	_	_		55		0	\rightarrow		0	_	0	_	0 0	_	14			23 51		0	42	_	0 (56			206	8995	0.887	0		90		159	0	0
13:45 14:00		25 20		-	0 (0	0	_		0	5	_	0	0	70	_	0		1 2	_		50	0	0	0	-	0	_	_	-	0 0		. 12	_		06 32		0	31	_	0 (57			374	9192	0.906	0		17	194	_	0	0
14:00 14:15	_	33 27			$\overline{}$	0 0	0	1	-	0	_	_	3	0	0	59	_	0	_	6 3	_	_	52		0	\rightarrow	_	0	_	1	_	0 0	_	13	_	_	21 79	_	0	35	_	0 (60	_	_	36	9480	0.935	0	_	97	198	_	0	0
14:15 14:30	_	27 18	_	_	0 (0	-	_	0	0	-	-	0	0	29	_	0	-	7 3	_		66	0	0	0		0	_	-	_	0 0	_	6	0	_	22 66	_	0	33	_	0 (55		_	989	9105				94		175	0	0
14:30 14:45	_	21 19	_	-	0 (0	0	_	-	0	-	-	0	0	39	50	0	_	7 2	_	_	45	_	0	0		0	_	_	_	0 0		5	0		9 71	_	0	26	_	0 (50				8842		_		94		155	0	0
14:45 15:00	_	27 9	_	·	0 (•	0	0	0	0	0	4	-	0	0	33		0	_	1 2	_	_	85		0	-	•	0	•	-	2 (0 0	_	6	0		12 48	_	0	-	_	0 (53			335	8303				71		186	0	0
17:00 17:15	_	36 10	_	-	0 (0	4	1	0	0	4	-	0	0	54	39	0	_	3 2	_	_	76	0	0	0	0	0	_	_	2 (0 0	_	15	0	_	0 59	_	0	\rightarrow	39	0 (57	_	_	352				_	82	_	3 191	U	0
17:15 17:30	_	34 16	_		0 (_	0		-	_	0	+-	_	0	0	37	\rightarrow	-	_	3 1	_	_	80		0	0	_	0	_	0	_	0 0	_	11	_	_	35 44	_	0	\rightarrow	_	0 (58	_	_	917 046			_	_	87		7 178	0	0
17:30 17:45	_	34 22	_	-	0 (_	0	1	0	0	0	-		U	0	48	_	0	_	2 2	_	_	56		0	0		0	_	0	_	0 0	_	15	0	_	01 45	_	0	32	_	0 (_				0.004	U	_	95	_	1 146	U	U
17:45 18:00		50 18	_		0 (_	0	2	1	0	0	5	_	0	0	52	50	0	_	0 2		_	70	_	0	_	_	0	_	0		ט ט		9	0	_	50	_	0	34	_	0 (61	_	_	106 190	8221	0.781	0		01	_	1 169	0	0
18:00 18:15 Z	_	43 38	_	-	0 (U	2	_	_	0	_	6	U	0	60	_	0		9 2	_	_	41		U	-	-	0	_	0	_	0 0	_	. 10	0		5 37		0	45	_	0 (57				8859	0.842	U	_	24	_	5 143	_	U
18:15 18:30 O		56 33 43 36	_		0 (0	1	-	_	0	5	_	0	0	55 46	_	0		2 2			84 70	0	0	0	-	0	_	0	0 (ט ט	_	9	0		23 57 15 57		0	55 46	_	0 (69		_	631 861	9573 9888	0.910	0		.07 .04	198	5 203 8 193	0	0
18:30 18:45			_	-	-		0	0	_	_	0	1		0	0		_	0		_	_				0	-		-					_	. 6	-		_	_	0		_		59		_	_		0.940			83	_		0	U
18:45 19:00	_	42 18 40 31	_	_	0 (_	Ť	-	_	_	0	0	_	0	0	60 41	40	0	-	2 2	_		86 59	-	0	0	_	0	_	_	-		_	. 6	0		0 34		0	35	_	0 (59		_	_	9572 9239		0		10	_	9 185 1 165	-	0
19:00 19:15	_	40 3.	_	-	-		0	-	-	0	0	+-	-	0	0	-	51	0	_	_	_	_	_	0	0	-		0	_	-	_	0 0	_	_	0	_	0 63	_	0	47	_	0 (53		_	_	9239 8540		0		90	_	_	_	U
19:15 19:30	_			_	0 (0	1	_	0	0	1		0	0	-	-	0	-	1 1	_		53	_	0	0		0	_	-	-	0 0	_	7	_	_	07 45	_	0	-	_	0 (_	_	_	_	8540 8186				_	_	2 146		0
19:30 19:45	0	38 16	_	-	_	_	0	_	_	-	0	+-		0		-	\rightarrow	0	-	9 2	_		65 67	_	0	-	_	0	_	_	2 (_	. 7	_	_	3 37	_	0	25	_	0 (48			007 744	7840		_		89	_	141	_	0
19:45 20:00	_			0	0 () <mark>0</mark>	U	1	0	_	0	0	17	U	0	29	200	0	_	_	_	_	320	_	U	0		_	-	0	_	·	_	. 3	0	-		_	0	_	_	0 (_	9 2	048 17	44	/840		U	86	71	144	4 168	U	U
H.P(MAÑANA)		110 12 125 76	_	0	,	0 0	0	1 2	4	0	Û	10	17	U	U	228	3UU 10C	U	0 9	_	55 0		220	0	0	0	_	0	Ŭ.	•	_	0 0	22	_	Ů	- "		_	U	_	240	0 (_	+						-	-	-	+	_	
	-	192 12	_	0	_	0 0	Ť	_	4	ŭ	Ť	18		0	0	214	186 193	0	0 1	25 11 51 9	_	_	265		0	0		_	0	_	_	0 0	_	34			55 222	_	0	158 180	101	0 0	_	+							+	-	+	\rightarrow	
H.P(NOCHE)	U 1	192 12	o U	U	U (0	0	5	4	U	U	18	16	U	U	213	193	U	0 1	9	0	150	265	0	U	U	1	U	U	1	/ (U U	10	34	U	0 44	#U ZU:	U	U	180	200	υ (,	+						-	-	-	+	_	
		⁄/AÑAN	٨		+	+	-	т	ARDE		-	-				NO	^UE			+			MAÑ	ANA				+	-		TARDE		-				B1	OCHE			-			+							+	-	+	\rightarrow	
		201 20			+	+	7.		1 202	2 20	12	-			200		202	202	-	+		_	MAN 21		23	-		+	-		21 2:		,			-		22	22			-		+							+	-	+	_	
	_	452 60			+	+	0	_	_	5 0	_	-				579	_	0	-	+	-		890		0		-	+		316 6	_	0 0	_	-			31 708		0		-	-	+	+						-	+	-	+	-	
X4		520 72	_		+	X4	0	_	_	3 0	_	-		(4	_	636		0	-	+	Х4	_		0	_	-		Х4		_		0 0	_		X4		04 812	_	0			-		+							+	-	+	_	
F.H.P	#### 0		4 U 34 ####		+	F.H.P	_	## 0.9	_	4 ###	_	-		K4 H.P	_	0.91	0.88 #	_	-		F.H.P	0.0	0.8	Ť	_		-	F.H.F	٥ ٥	0.05 (12 L	## ###	_	-	F.H.	_	_	2 U 7 ####			-	-	-	+				-		-	+	-	+	-	
r.n.P	#### U	J. /3 U.E	× ####			г.п.Р	****	u.9	U.84	4 ###	***		r.	n.r	*******	0.91	U.00 F	*****			r.n.r	0.85	U.ŏ	*****	*******			1.17	O ²	ו וכביו	J.3 ###	***	***		r.H.	r 0.	00 0.8	/ ####	*****																
																												•	J 1																										

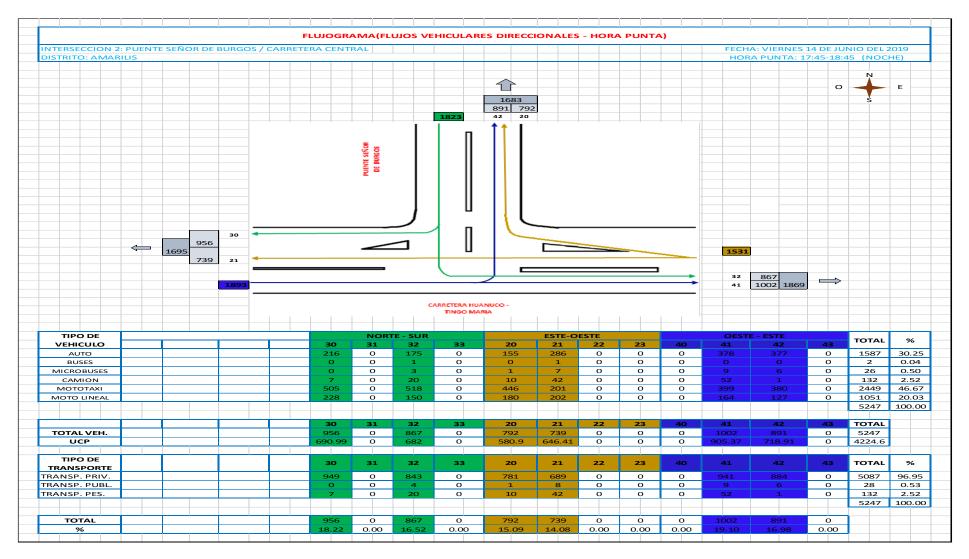

																													A	FOF	RO V	EHIC	CULA	R(SE	ENTI	DO:0	0-E)																														I	I		I	
UBICACION:						E BL	RGO	S																																																											4	_	_	+	_
FECHA: SAB	ADO 1	DE JU	NIOE	EL 201	9										_												_					_		_	_	_	_	_																			_			_	_		_	_	_	_	+	+	-	+	_
HORAS DE		AU	τO			BL					MICE	20	_			AMI	ON			NAC	TOT	ΛVI		_	ОТО	LIN	EAL			۸۱	UTO				BU	ıc				ИCR	0			CA	MIOI	N		N	ОТОТ	TA VI		- 1	ото	LINE			IL SI		ACCESO	OS	OTAL		707	AL DO	P MOV	UNUEN	TOT	TAL D	OR MOV	INAICA	
CONTROL	400	401	_	403	100	_	402	403	Δ.		401	-	40:	3 40	_	_	_	403	2 40	00 4			403					IN3	40			12	43	40	41		2 43	3 4	_	41	42	43	40	_	1 4	_	13 /	40	41	42	43	40	_	-		1/4 HC	RA H	UMA IORA	1/4 HORA	шо	ORA	FHP	_	_	01 40			_	41 4	42	
06:00 06:15	15		0	_	0	0	0	0	0	-	1	0	0	0		_	0	0	13	_	_	0	0	3		0	(0	0		10	_		0	1	0	-	0) 1	14	0	0	7	0) (. ()	45	30	0	0	20	5	0	255	_		698	_	T		31	_	_) (0		132 59	_	0
06:15 06:30	_	11	0	0	0	1	0	0	1		2	0	0	1	_	\rightarrow	0	0	_	5 1		0	0	9	_	0		0	0	81	_	_)	0	0	0	+	0	-	_	0	0	0	14	2	2 (C	_	38	_	0	0	_	17	0	319			885	_	T		59	4/	1 0) (0	0 1	154 62		0
06:30 06:45	13	10	0	0	0	0	0	0	1		0	0	0	3	,	5	0	0		1 1		0	0	13	11	0	(0	$\overline{}$		4	(0	0	0	0	0	0		2	1	0	0	7	5	5 (0) .	46	48	0	0	30	13	0	338			1014		T		64	42	2 0) (0	0 1	161 71	1 1	0
06:45 07:00	10	16	0	0	1	1	0	0	0	7	1	0	0	2	2	2	0	0	43	3 2	5	0	0	8	18	0	(0	0	56	6	()	0	0	0	0	0		7	0	0	0	8	2	2 (0) .	42	74	0	0	24	20	0	359	1	1271	1306	39	903		64	63	3 0) (0 /	0 1	130 10	2 1	0
07:00 07:15	. 15	19	0	0	0	0	0	0	1		0	0	0	2	2	1	0	0	65	3	0	0	0	21	15	0	(0	0	64	14	1 (0	0	2	0	0	0		3	0	0	0	17	1	1 (0)	62 1	109	0	0	19	17	0	477	1	1493	1888	50	093		104	4 65	5 C) (0 /	0 1	167 14	1 /	0
07:15 07:30	20	36	0	0	0	1	0	0	1		0	0	0	3		3	0	0	75	4	5	0	0	50	22	0	(0	0	72	30) (0	0	2	1	0	0		2	0	0	0	8	3	3 (C)	70 1	110	0	0	23	44	0	621	1	1795	2680	68	888	0.643	3 149	9 10	7 0) (0	0 1	177 18	8 /	0
07:30 07:45	40	25	0	0	1	0	0	0	2	2	2	0	0	2	2 !	5	0	0	85	3	9	0	0	38	32	0	(0	0	68	49) (0	0	0	0	0	0		L	1	0	0	11	. 4	l (0)	56	75	0	0	33	40	0	609	2	2066	2226	81	100	0.756	6 168	8 10	3 0) (0 (0 1	169 16	9 (0
07:45 08:00	45	35	0	_	0	_	0	0	0)	1	0	0	5	5	1	0	0	_) 4	_	0	0		37	-	(0	0		. 56	_	0		0	_	_	0		3	1	0	0	12	. 0) (0	_	57	_	0	0	68		0	741	2	2448	2235	90	029	0.842	2 199	9 11	4 0) (0 (0 2	251 17	7 (0
08:00 08:15		25	0	_	0	-	0	0	0	_	1	0	0	1		3	0	0	_) 5	_	0	0		22		(0	0		70		0	-	0	_	_	0		_	0	0	0	_	. 3	_	C	_	82	_	0	0	27		0	691	_	2662	2429		570	0.893	3 179		_) (0 (218 19	_	0
08:15 08:30	31	_	0	_	-	0	0	0	2	_	-	0	0	3	_	-	0	0	_	3.	_	0	0		15			-	$\overline{}$		59	_	_	_	-	_	-	0	-	_	0	0	0	-	_	_	_	-	122	_	0	0	_	48	0	692	_	2733	2102	_			151	_	_) (0 /	_	275 20		0
08:30 08:45	_	34	0	-	-	0	0	0	0	_	2	0	0	5	_	-	0	0	65	_	_	0	0		23	-	(0	0		55	_	_	-	0	0	-	0	_	_	1	0	0	_	_	_	_	-	132	_	0	0	_	49	0	682		2806		2 87			145		_) (0 (_	272 16		0
08:45 09:00		45	0	_	-	0	0	0	2	_	1	0	0	6	-	6	0	0	85	_	_	0		_	20		(0	0		76	_	_	_	0	_	_	10		_	0	0	0		_	_		_	105	_	0	0	_	68	0	778		2843		L 86	624		202		_	4	0 1		258 20		0
12:00 12:15		47	0	-	0	0	0	0	2	-	1	0	0	3	_	/	0	0	_	3.	_	U	_		23	-	1	_	$\overline{}$		49	_	_	-	0		_	0	-	_	0	0	_	11	_	_	_	_	102 1	_	0	_	53		0	720	_	_	2001	_	\dashv		125	_	_	Ψ	0 1	_	275 21	_	J
12:15 12:30		46	0	-	-	0	0	0	1	-	2	0	0	5	_	-	0	0	80	_	_	0	_	32	_	-	+ (-	$\overline{}$		98	_	_	_	0	0	_	+0		_	0	0	0	_	_	_	_	_	90 1	_	0	0	_	34	0	757	_	_	2011	_	\dashv	—	163 189	_		4	0 1	_	224 24	_	J
12:30 12:45	45	_	0	-	\rightarrow	0	0	0	0	_	1	0	0	4	_	6	0	0		3		0			32		_	-	$\overline{}$		96	_	_	_	0	0	_	0	-	_	0	0	0	_	_	_	_	_	70	_	0	0	54 30		0	732 715	_	924	2053	_	242		189	_	_	#	0 (_	212 22 155 17	_	٥
12:45 13:00 13:00 13:15	60	45 45	0	_	-	0	0	0	1	-	1	0	0	1 6	_	\rightarrow	0	0	_	8 7	$\overline{}$	0			40 45		-	_	0		70	$\overline{}$	_	-	0	0	-	0	_	_	0	0	0	-	_	_	_	-	50 94	94 67	0	0	39		0	764	_	2924	2248	7 82	489	—	202	_	-	+	0 1	_	155 17 215 17	_	J
13:15 13:30		60	0	_		0	0	0	1	-	1	0	0	3	_		0	0		7 6		0			40		_	_	\rightarrow		10	_	_	_	\rightarrow	0	_	0	_	_	1	0	0	-	_	_		_	69	\rightarrow	0	0	25	40	0	787	_	2908	2364	_	842	0.97	202		-	\pm	0 1	_	182 22	_	J
13:30 13:45		55	0	_		0	0	0	1	_	_	0	0	5		4		0) 7		0			50			-	\rightarrow		50	_	_	_	0	_	_	_	_	3	_	0		7	_	_	_	_	74	_	0		29		0	738	_	2004	2206		995	0.887	_	+-	4 U	\pm	7	_	185 16	_	7
13:45 14:00	_	70	0	_	\rightarrow	0	0	0	0	_	-	0	0	5	_	\rightarrow	0	0		7 7		0	0		65		$\overline{}$		\rightarrow		39	_		-	-	_	-	0	_	-	0	0	0	_	1	_	_	_	70	_	0	_	32		0	790	_	3004	2374	_	192		6 234	_	9 0	\pm	, –	_	186 16		n
14:00 14:15	_	45	0	_	\rightarrow	0	0	0	0	_	-	0	0	5	_	4		0	_	6.	_	0	0		35		-		\rightarrow		56	_	_	-	-	_	-	0	_	3	-	0	0	_	_	_	_	_	130 1	_	0	_	51		0	882	_	3197	2536	_	480	0.935	_	_	_	+	0		295 22		0
14:15 14:30	50	_	0		0	0	0	0	1		1	0	0	3		_	0	0	69		_	0			35			0	0		10	_	_	-	0	0	_	0	_	_	2	0	0	_	_		_	_	_	70	0	0	28		0	662	_	3072	1989	_	-		188	8 10	J8 () (0		167 19	_	0
14:30 14:45	55	30	0	0	0	0	0	0	3	1	0	0	0	4	1 :	3	0	0	85	5 5	0	0	0	50	16	0	(0	0	79	70) (0	0	0	0	0	0		L	0	0	0	14	1	1 (0)	80 :	100	0	0	61	48	0	750) 3	3084	1943	88	842		197	7 99	9 0) (0 (0 2	235 21	9 (0
14:45 15:00	_	45	0	0	0	0	0	0	6	;	3	0	0	4	1 4	4	0	0	80	_	_	0	0		35		(0	$\overline{}$		72	_	0	0	0	0	_	0		2	1	0	0	_	_) (0	_	93 1	\rightarrow	0	0	27	27	0	678	_	2972		83	303		157	7 13	7 0) (0	0 1	182 20	12 1	0
17:00 17:15	23	16	0	0	0	0	0	0	0)	0	0	0	0	\top	1	0	0	34	1 1	0	0			10		(0	0	93	60) ()	0	0	0	0	0		ı	0	0	0	13	0) ((C)	65	83	0	0	54	26	0	510	T		1852	Œ	I		78	37	7 0) (0	0 2	226 16	9 1	0
17:15 17:30	31	45	0	0	0	0	0	0	1		1	0	0	3	1	6	0	0	85	5 5	0	0	0	38	48	0	(0	0	72	68	3 (0	0	0	0	0	0		3	0	0	0	9	1	1 (0)	93	93	0	0	19	17	0	683			1917	\perp			158	8 15	0 0) (0 /	0 1	196 17	9 /	0
17:30 17:45		36	0	0	0	0	0	0	3	3	1	0	0	5	,	6	0	0	90) 4	8	0	_		27	_	(0	0	113	45	5 (0	0	0	0	0	0		3	1	0	0	13	0) (0)	98	78	0	0	35	19	0	701			2046				178	8 11	.8 0) (0 (0 2	262 14		0
17:45 18:00	55	46	0		-	0	0	0	0)	0	0	0	5	4	1	0	0	_	5 4	_	0	0		32	-	(0	0	89	11	5 (0	0	0	0	0	0		3	3	0	0	11	. 0) (0)	97	74	0	0	24		0	765		2659	2406		221	0.781	_		9 0) (0 (_	224 22		0
18:00 18:15	. —	33	0	_	-	0	0	0	0	_	1	0	0	4	_	_	0	0	_	8	_	0	0		49	-	_	0	0		10	_)	_	0	_	_	0	_	_	1	0	0	17	_	_	0	_	99	_	0	0	59		0	871		3020	2490	_	859		2 189		_) (0 /	_	276 23		0
18:15 18:30	_	65	0	-	0	-	0	0	0	_	-	0	0	-	1 (_	_	0	-	1 7	_	0	0		31	-	_	0	0		10	_)	_	_	0	-	0	_	L	_	0	0	_	0	_	0	-	132 1	_	0	0	37		0	875	_	3212	2631	_	573		0 193	_	_) (0 (_	280 23	_	0
18:30 18:45	_	25	0		-	0	0	0	1		1	0	0	7		1	-	0	_	7.	_	0	0		30	-	_	0	0		47	_	0	_	0		_	0	_	_	0	0	0	14	_		C	_	61	_	0	0	44		0	690	_	3201	2361	_	888	0.940	0 213	_		4	0 (_	180 16	_	Û
18:45 19:00		71	0	_	\rightarrow	0	0	0	1	_	2	0	0	1	_	\rightarrow	0	0		6		0	0		32	-	-	_	0		76	$\overline{}$	_	_	0		_	0	_	_	0	0	0		_	_	_		93 1		0	0	27		0	847	_	3283	2090	_	572		229	_	_	4	0 1		221 22		0
19:00 19:15		35	0	_		0	0	0	1	-	0	0	0	2	_	\rightarrow	0	0		2 5	$\overline{}$	0	0		36		_	_	$\overline{}$		86	_	_	-	\rightarrow		_	0	-	_	0	0	0	_	\rightarrow	_	_	_	82 1	\rightarrow	0	0	49		0	763	_	3175	_	7 92		—	166	_	-	4	0 1	_	240 23	_	٥
19:15 19:30		40	0	_	$\overline{}$	0	0	0	0	_	0	0	0	0	_	1	0	U	75	$\overline{}$	_	0	0		15		-	_	$\overline{}$. 68	$\overline{}$	_	_	\rightarrow	0	_	0	-	_	0	U	0	_	$\overline{}$	_			95		U	0	42		0	729	_	3029		85	_		168	_		4	<u>, </u>	_	252 19 270 22		٥
19:30 19:45	45	35 50	0		0	0	0	U	0	-	0	U	U	0		1	0	U	36		_	0	U	35	13 30	-	+	_	0	95 80	95	_	_	_	0	0	+	0	-	_	0	0	0	9	_	_		_	56	98 57	U	0	47 29	27	_	696	7 2	3035	2007	7 81 1 78			117 156			#	<u>, </u>		270 22 169 13		٦
19:45 20:00	155		0	0	1	1	U	0	2	_	4	U	0	11	_	2	0	0	33	_	_	0		195	113	_	+ '	_	0		20	_	_	-	-	1	-		_	_	-	0	0	+-	-			_	_	350	U	-	29 151	159	_	597		2/80	1/44	/8	D4U	—	120	0 13	<u> </u>	4	الد	υ 1	09 13	4	_
H.P(MANANA		230	0	0	U	U	n	0	2	4	1	0	0	+=		-	n	0	32	-	_	-	_	245	190	·	_	_	0		24		_	_	0	0	·	_	_		_	0	0	-	_	_				388	0	_	137	132	_		+			+	-		+	+	+	+	+	+	+	+	
H.P(NOCHE)	210	169	0	0	n	0	0	0	1	-	2	0	0	_	_	6	0	0	32	_	50	_	_	230	1//2	0	_	n	0	346	-	_)	0	0	0	0	0		,	6	0	0	52	1		0	_	189	266	0	0	164	127	0		+			+	+		+	+	+	+	+	+	+	+	
n.r(NUCHE)	210	109	U	U	J	U	U	U	1	-		U	U	20	4	U	U	U	32	J 20	13	U	U	230	142	U		0	U	J40	, 30	J (_	J	U	U	U	U		_	U	v	U	32	1		·	, ;	ב לכני	700	U	U	104	14/	U		+			+	+		+	+	+	+	+	+	+	+	
		MAÑ	ANA		+						TARI	DF			+	+				Ν	IOCH	IF					+			MAI	ÑAN.	Α		+	\dashv	_	+	Т		TARD	F				+		t	+	NOCI	-IF							+			+	+		+	+	+	+	+	+	+	+	
	400	401		403					40		401	_	40:	3					40	0 4		_	403					Ī	_			12	43	+	\dashv			í	_	41	_	43					-	_	41	_	43						+				\forall				+	+		+		+	
	695	425	0	0	7						711	_	0	Т	\top	T			79		_	0	0				\top	_			72	_	_	\top	\exists	_		0	_	18 7	_	0			\top		C) 9	960 8	_	0						\top			\top	\forall			\top	\top	+	\top	\pm		+	
X4	796	456	0	0			Х	4	93	6 8	336	0	0	1			Х	4	85	2 68	38	0	0				X4	Ī	0	1004	4 77.	2 (0	\top)	X4	0	11	80 9	916	0				Х4	C) 1	120 9	956	0										\Box										
F.H.P	0.87	0.93	####	###			F.I	I.P	0.9	92 0	.85 #	####	###	#			F.F	I.P	0.9	3 0.8	85 ##	### #	###			F	.H.P	#	###	0.81	0.9	4 ##	##	\top		F./	.H.P	###	## 0.	72 0	.84 #	####			F	F.H.P	###	## 0	.86	0.9 #	###										\exists										
				_					_	-									_									_			-							-	•																																

(ANEXO N° 11)

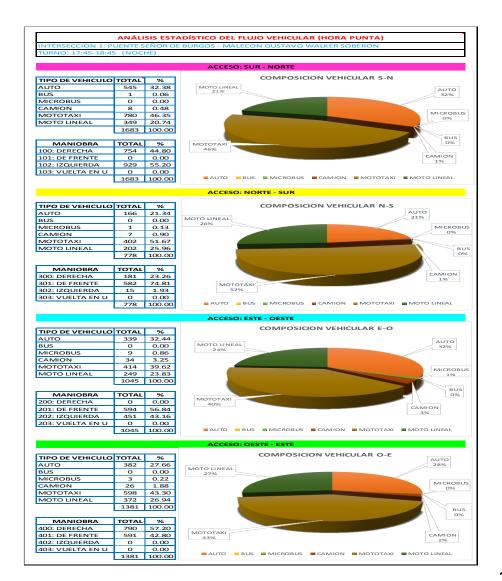
FLUJOGRAMA DE LA INTERSECCION 1: PUENTE SEÑOR DE BURGOS CON EL MALECÓN GUSTAVO WALKER SOBERÓN Y EL JR. CRESPO CASTILLO

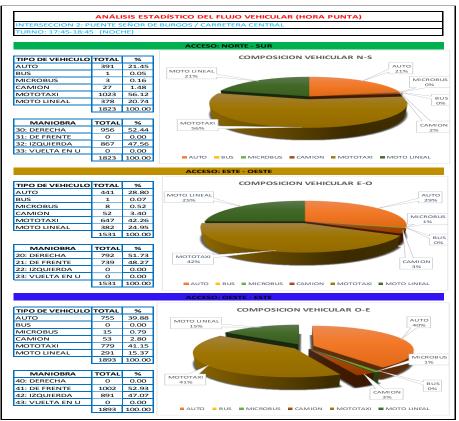




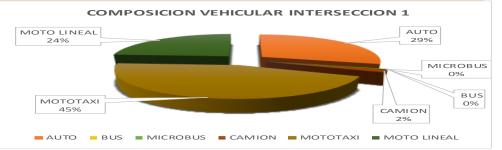


(ANEXO N° 12)


FLUJOGRAMA DE LA INTERSECCION 2: PUENTE SEÑOR DE BURGOS CON LA CARRETERA CENTRAL

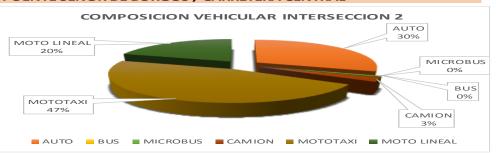


(ANEXO N° 13) ANÁLISIS ESTADÍSTICO DEL FLUJO VEHICULAR DE LA INTERSECCION



RESUMEN DEL ANÁLISIS ESTADÍSTICO DEL FLUJO VEHICULAR (HORA PUNTA)

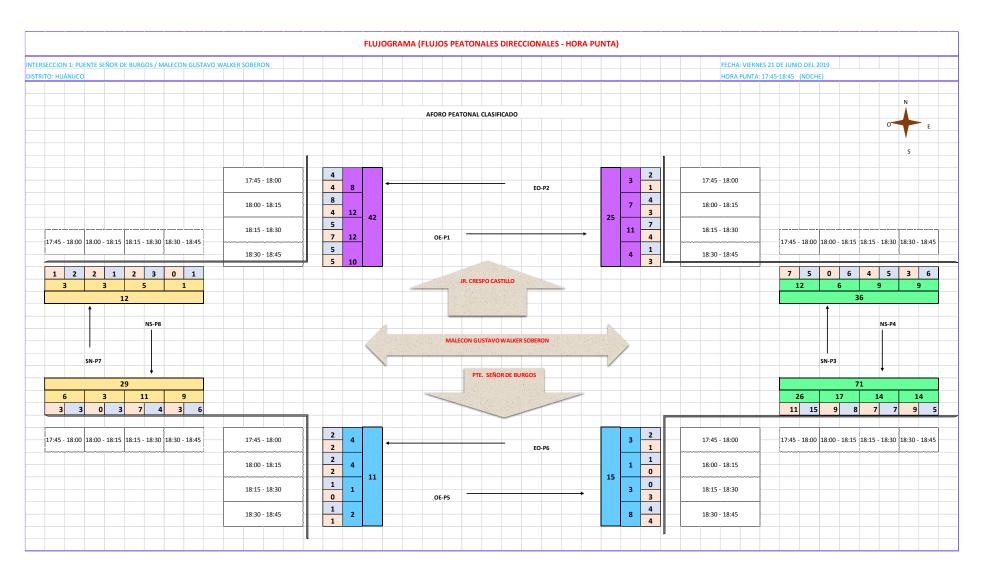
TURNO: 17:45-18:45 (NOCHE)


INTERSECCION 1: PUENTE SEÑOR DE BURGOS - MALECON GUSTAVO WALKER SOBERON

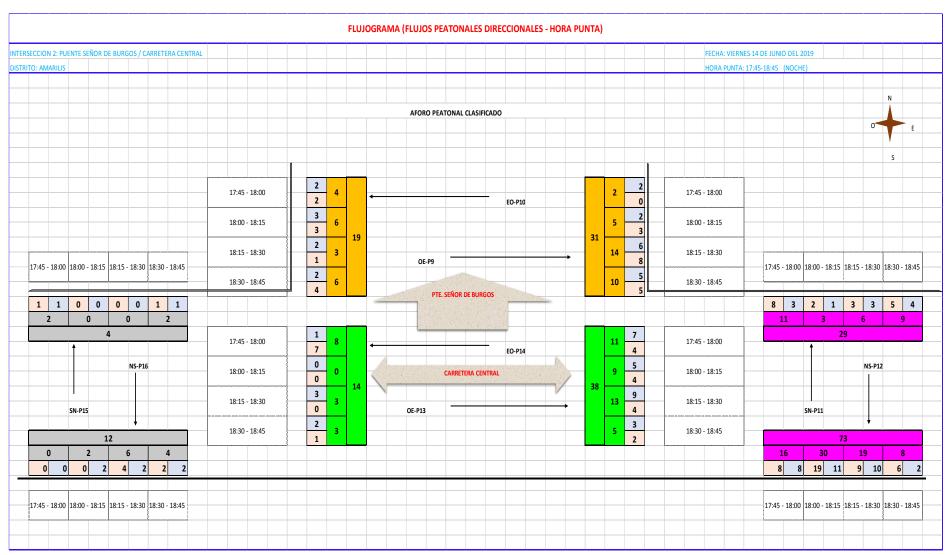
TIPO DE VEHICULO	TOTAL	%
AUTO	1432	29.30
BUS	1	0.02
MICROBUS	13	0.27
CAMION	75	1.53
MOTOTAXI	2194	44.89
MOTO LINEAL	1172	23.98
	4887	100.00

INTERSECCION 2: PUENTE SEÑOR DE BURGOS / CARRETERA CENTRAL

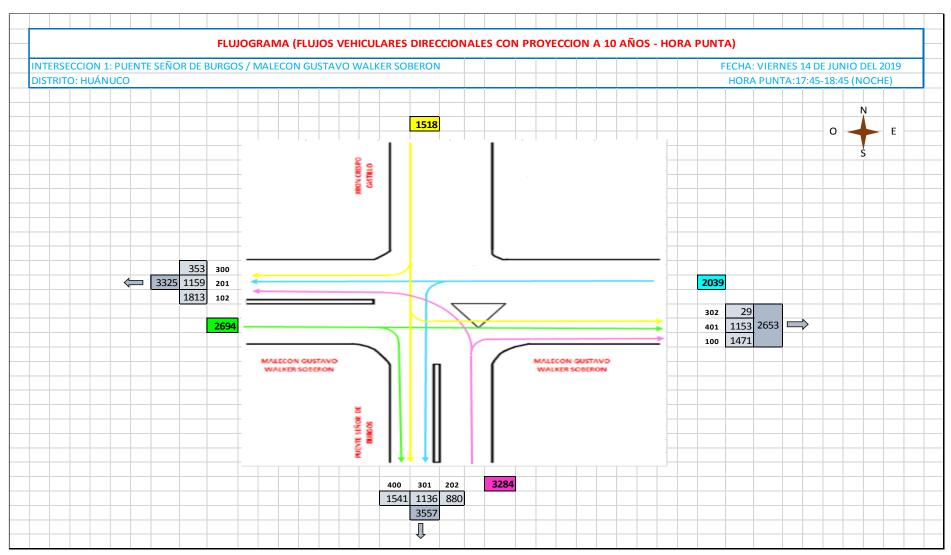
TIPO DE VEHICULO	TOTAL	%
AUTO	1587	30.25
BUS	2	0.04
MICROBUS	26	0.50
CAMION	132	2.52
MOTOTAXI	2449	46.67
MOTO LINEAL	1051	20.03
	5247	100.00

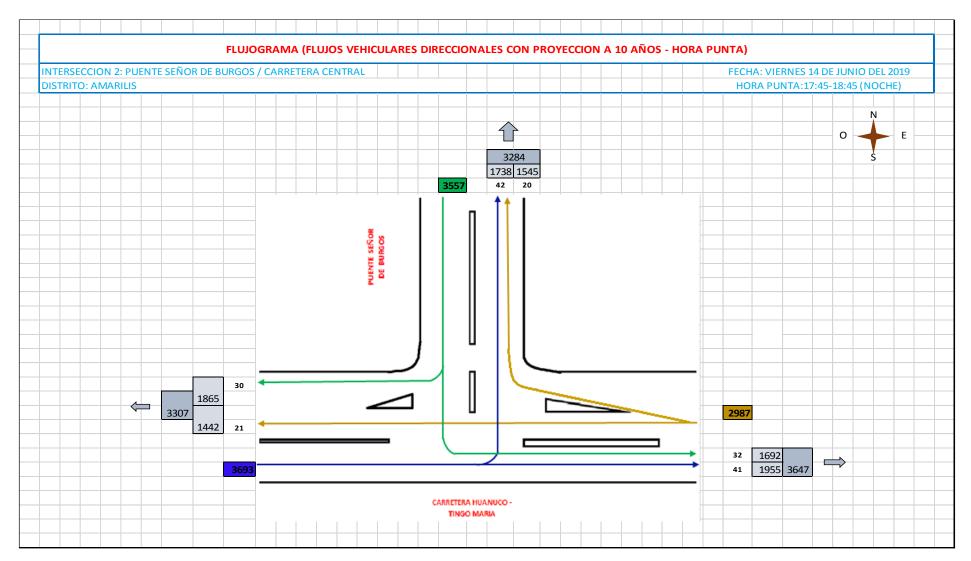

TOTAL: INTERSECCION 1 + INTERSECCION 2

TIPO DE VEHICULO	TOTAL	%
AUTO	3019	29.79
BUS	3	0.03
MICROBUS	39	0.38
CAMION	207	2.04
MOTOTAXI	4643	45.82
MOTO LINEAL	2223	21.94
	10134	100.00

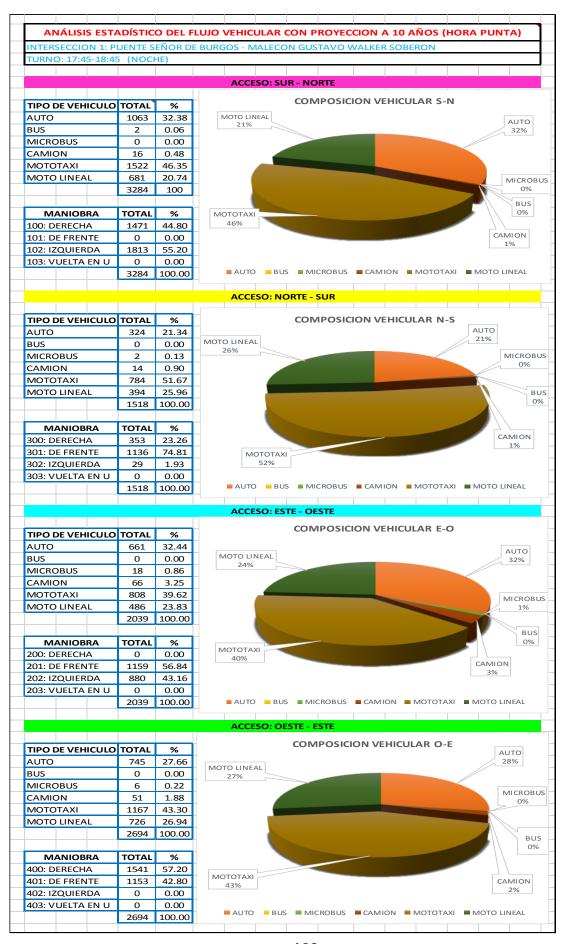

(ANEXO N° 14)

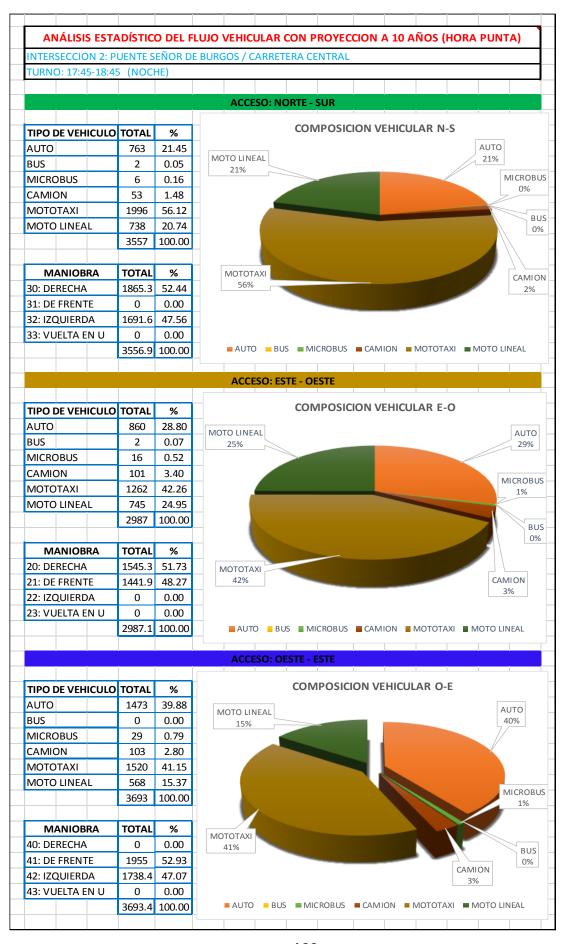
AFORO PEATONAL DE LA INTERSECCION 1: PUENTE SEÑOR DE BURGOS CON EL MALECÓN GUSTAVO WALKER SOBERÓN Y EL JR. CRESPO CASTILLO

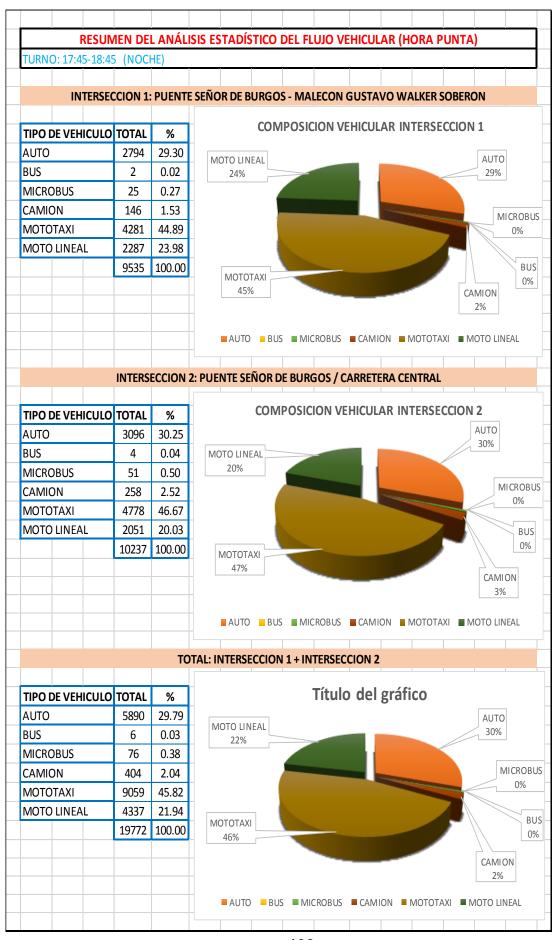



(ANEXO N° 15)

AFORO PEATONAL DE LA INTERSECCION 2: PUENTE SEÑOR DE BURGOS CON LA CARRETERA CENTRAL




(ANEXO N° 16) FLUJOGRAMA DE LA INTERSECCION CON PROYECCIÓN A 10 AÑOS



(ANEXO N° 17) ANÁLISIS ESTADÍSTICO DEL FLUJO VEHICULAR CON PROYECCIÓN A 10 AÑOS DE LA INTERSECCION

(ANEXO N° 18) PANEL FOTOGRÁFICO

FOTOGRAFIA N° 01: Se muestra al especialista ubicado en el Jr. Crespo Castillo (Estación 1), realizando el aforamiento vehicular en la intersección 1.

FOTOGRAFIA N° 02: Se muestra al especialista ubicado en el Malecón Daniel Alomia Robles (Estación 2), realizando el aforamiento vehicular en la intersección 1.

FOTOGRAFIA N° 03: Se muestra al especialista ubicado en el Malecón Daniel Alomia Robles (Estación 3), realizando el aforamiento vehicular en la intersección 1.

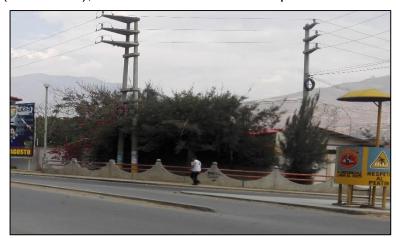
FOTOGRAFIA N° 04: Se muestra al especialista ubicado en el Malecón Daniel Alomia Robles (Estación 4), realizando el aforamiento vehicular en la intersección 1.

FOTOGRAFIA N° 05: Se muestra al especialista ubicado en la Carretera Central (Estación 5), realizando el aforamiento vehicular en la intersección 2.

FOTOGRAFIA N° 06: Se muestra al especialista ubicado en la Carretera Central (Estación 6), realizando el aforamiento vehicular en la intersección 2.

FOTOGRAFIA N° 07: Se muestra al especialista ubicado en la Carretera Central (Estación 7), realizando el aforamiento vehicular en la intersección 2.

FOTOGRAFIA N° 09: Se muestra al equipo de apoyo de aforo vehicular.


FOTOGRAFIA N° 10: Se muestra al especialista ubicado en el Malecón Daniel Alomia Robles (Estación 1), realizando el aforamiento peatonal en la intersección 1.

FOTOGRAFIA N° 11: Se muestra al especialista ubicado en el Malecón Daniel Alomia Robles (Estación 2), realizando el aforamiento peatonal en la intersección 1.

FOTOGRAFIA N° 12: Se muestra al especialista ubicado en la Carretera Central (Estación 3), realizando el aforamiento peatonal en la intersección 2.

FOTOGRAFIA N° 13: Se muestra al especialista ubicado en la Carretera Central (Estación 4), realizando el aforamiento peatonal en la intersección 2.

