UNIVERSIDAD DE HUANUCO

FACULTAD DE INGENIERIA PROGRAMA ACADÉMICO DE INGENIERIA CIVIL

TESIS

"Mejora de la resistencia a la compresión del adobe hecho con fibras orgánicas de bambú en el distrito de Amarilis – Huánuco – 2023"

PARA OPTAR EL TÍTULO PROFESIONAL DE INGENIERO CIVIL

AUTOR: Doroteo Morales, Yeltsin

ASESORA: Cecilio Reyes, Fatima Rosaria

HUÁNUCO – PERÚ 2024

TIPO DEL TRABAJO DE INVESTIGACIÓN:

- Tesis (X)
- Trabajo de Suficiencia Profesional()
- Trabajo de Investigación ()
- Trabajo Académico ()

LÍNEAS DE INVESTIGACIÓN: Estructuras AÑO DE LA LÍNEA DE INVESTIGACIÓN (2020)

CAMPO DE CONOCIMIENTO OCDE:

Área: Ingeniería

Sub área: Ingeniería Civil Disciplina: Ingeniería Civil DATOS DEL PROGRAMA:

Nombre del Grado/Título a recibir: Título

Profesional de Ingeniero Civil Código del Programa: P07 Tipo de Financiamiento:

- Propio (X)UDH ()
- Fondos Concursables ()

DATOS DEL AUTOR:

Documento Nacional de Identidad (DNI): 47377383

DATOS DEL ASESOR:

Documento Nacional de Identidad (DNI): 47064856

Grado/Título: Maestro en medio ambiente y

desarrollo sostenible, mención en gestión ambiental

Código ORCID: 0009-0001-5016-5538

DATOS DE LOS JURADOS:

N°	APELLIDOS Y NOMBRES	GRADO	DNI	Código ORCID
1	Trujillo Ariza,	Maestro en medio	70502371	0000-0002-
	Yelen Lisseth	ambiente y		5650-3745
		desarrollo		
		sostenible,		
		mención en		
		gestión ambiental		
2	Taboada	Doctor en medio	40847625	0000-0002-
	Trujillo, William	ambiente y		4594-1491
	Paolo	desarrollo		
		sostenible		
3	Jara Trujillo,	Maestro en	41891649	0000-0001-
	Alberto Carlos	ingeniería, con		8392-1769
		mención en		
		gestión ambiental		
		y desarrollo		
		sostenible		

UNIVERSIDAD DE HUANUCO

Facultad de Ingeniería

PROGRAMA ACADÉMICO DE INGENIERÍA CIVIL

ACTA DE SUSTENTACIÓN DE TESIS PARA OPTAR EL TÍTULO PROFESIONAL DE INGENIERO(A) CIVIL

En la ciudad de Huánuco, siendo las 15:00 horas del día lunes 03 de febrero de 2025, en cumplimiento de lo señalado en el Reglamento de Grados y Títulos de la Universidad de Huánuco, se reunieron los Jurados Calificadores integrado por los docentes:

❖ MG. YELEN LISSETH TRUJILLO ARIZA

PRESIDENTE

❖ DR. WILLIAM PAOLO TABOADA TRUJILLO

SECRETARIO

❖ MG. ALBERTO CARLOS JARA TRUJILLO

VOCAL

Nombrados mediante la RESOLUCIÓN No 0128-2025-D-FI-UDH, para evaluar la Tesis intitulada: "MEJORA DE LA RESISTENCIA A LA COMPRESIÓN DEL ADOBE HECHO CON FIBRAS ORGÁNICAS DE BAMBÚ EN EL DISTRITO DE AMARILIS — HUÁNUCO — 2023", presentado por el (la) Bachiller. Bach. Yeltsin DOROTEO MORALES, para optar el Título Profesional de Ingeniero(a) Civil.

Dicho acto de sustentación se desarrolló en dos etapas: exposición y absolución de preguntas: procediéndose luego a la evaluación por parte de los miembros del Jurado.

MG. YELEN LISSETH TRUJILLO ARIZA DNI: 70502371

ORCID: 0000-0002-5650-3745

PRESIDENTE

DR. WILLIAM PAOLO TABOADA TRUJILLO

DNJ: 40847625

ORCID: 0000-0002-4594-1491

SECRETARIO (A)

MG. ALBERTO CARLOS JARA TRUJILLO

DNI: 41891649 ORCID: 0000-0001-8392-1769

VOCAL

CONSTANCIA DE ORIGINALIDAD

El comité de integridad científica, realizó la revisión del trabajo de investigación del estudiante: YELTSIN DOROTEO MORALES, de la investigación titulada "Mejora de la resistencia a la compresión del adobe hecho con fibras orgánicas de bambú en el distrito de Amarilis – Huánuco – 2023", con asesor(a) FATIMA ROSARIA CECILIO REYES, designado(a) mediante documento: RESOLUCIÓN Nº 2185-2024-D-FI-UDH del P. A. de INGENIERÍA CIVIL.

Puede constar que la misma tiene un índice de similitud del 24 % verificable en el reporte final del análisis de originalidad mediante el Software Turnitin.

Por lo que concluyo que cada una de las coincidencias detectadas no constituyen plagio y cumple con todas las normas de la Universidad de Huánuco.

Se expide la presente, a solicitud del interesado para los fines que estime conveniente.

Huánuco, 31 de octubre de 2024

RESPONSABLE DE INTEGRIDABITAD . INTEGRIPATION . INTEGRIDABITAD . INTEGRIDA

RICHARD J. SOLIS TOLEDO D.N.I.: 47074047 cod. ORCID: 0000-0002-7629-6421 RESPONSIVELE CO PERU

FERNANDO F. SILVERIO BRAVO D.N.I.: 40618286 cod. ORCID: 0009-0008-6777-3370

3. Doroteo Morales, Yeltsin.docx

INFORME DE ORIGINALIDAD

INDICE DE SIMILITUD

24%

24%

FUENTES DE INTERNET

1%

PUBLICACIONES TR

%TRABAJOS DEL

ESTUDIANTE

FUENTES PRIMARIAS

1

repositorio.udh.edu.pe

Fuente de Internet

11%

2

hdl.handle.net

Fuente de Internet

4%

3

repositorioacademico.upc.edu.pe

Fuente de Internet

1 %

4

Submitted to Universidad Cesar Vallejo

Trabajo del estudiante

9/

5

repositorio.ucv.edu.pe

Fuente de Internet

1 %

RICHARD J. SOLIS TOLEDO D.N.I.: 47074047 cod. ORCID: 0000-0002-7629-6421

FERNANDO F. SILVERIO BRAVO D.N.I.: 40618286

cod. ORCID: 0009-0008-6777-3370

DEDICATORIA

En este humilde trabajo de investigación, deseo dedicar cada palabra, cada esfuerzo y cada logro a ustedes, pilares inquebrantables de mi vida.

A Dios, fuente de sabiduría y guía eterna, agradezco por iluminar mi camino y ser mi fortaleza en los momentos de desafío.

A mis padres Tuber y Merlinda, cuyos sacrificios y amor incondicional han sido el cimiento de mis logros, les dedico cada línea como expresión de gratitud por su apoyo constante y creencia en mis sueños. Su entrega y ejemplo han sido mi mayor inspiración.

A mi amada hermana Tania, compañera de risas y confidente, agradezco por ser mi motivación adicional y por compartir este viaje conmigo. Tus palabras alentadoras han sido un bálsamo en los momentos difíciles.

A todos aquellos que han formado parte de mi trayecto académico, amigos y docentes, les dedico este trabajo como testimonio de la importancia que tienen en mi vida. Cada palabra impresa lleva consigo el eco de sus ánimos y enseñanzas.

AGRADECIMIENTOS

A la distinguida universidad de Huánuco que me ha brindado el escenario para crecer intelectualmente, agradezco por ser la plataforma que ha nutrido mi mente y ampliado mis horizontes. Cada aula, cada biblioteca y cada experiencia vivida aquí han sido piedras angulares en mi formación.

A todos los colaboradores, cuya sabiduría y orientación han sido guías cruciales en la elaboración de este trabajo, le agradezco por su dedicación y apoyo continuo. Sus enseñanzas han dejado una huella perdurable en mi aprendizaje, y su compromiso ha sido la brújula que ha guiado mis esfuerzos.

A mis apreciados docentes, cuyo compromiso con la excelencia académica ha sido inspirador, les agradezco por impartir conocimientos de manera apasionada y por desafiarme constantemente a superar mis límites. Su influencia ha sido transformadora, moldeando mi perspectiva y enriqueciendo mi comprensión del mundo.

A mis amigos más íntimos, quienes han sido mi red de apoyo y fuente inagotable de ánimo, les agradezco por estar a mi lado en cada paso de esta travesía. Sus palabras alentadoras, risas compartidas y amistad sincera han hecho de este viaje universitario una experiencia aún más memorable.

Este trabajo lleva consigo la esencia de todos ustedes, reflejando el aprendizaje, la dedicación y el respaldo que he recibido a lo largo de mi camino universitario. Que estas palabras de agradecimiento sirvan como un modesto tributo a la contribución invaluable de cada uno de ustedes en mi formación académica y personal.

ÍNDICE

DEDICATORIA	II
AGRADECIMIENTOS	III
ÍNDICE	IV
ÍNDICE DE TABLAS	VII
ÍNDICE DE FIGURAS	IX
RESUMEN	XII
ABSTRACT	XIII
INTRODUCCIÓN	XIV
CAPITULO I	15
PROBLEMA DE INVESTIGACIÓN	15
1.1. DESCRIPCIÓN DEL PROBLEMA BASE	15
1.2. FORMULACIÓN DEL PROBLEMA	16
1.2.1. PROBLEMA GENERAL	16
1.2.2. PROBLEMAS ESPECÍFICOS	16
1.3. OBJETIVOS	17
1.3.1. OBJETIVO GENERAL	
1.3.2. OBJETIVOS ESPECÍFICOS	17
1.4. JUSTIFICACIÓN DE LA INVESTIGACIÓN	
1.4.1. JUSTIFICACIÓN TEÓRICA	
1.4.2. JUSTIFICACIÓN PRÁCTICA	18
1.4.3. JUSTIFICACIÓN METODOLÓGICA	18
1.5. LIMITACIONES DE LA INVESTIGACIÓN	18
1.6. VIABILIDAD DE LA INVESTIGACIÓN	19
CAPITULO II	20
MARCO TEÓRICO	20
2.1. ANTECEDENTES DE LA INVESTIGACIÓN	20
2.1.1. ANTECEDENTES INTERNACIONALES	20
2.1.2. ANTECEDENTES NACIONALES	20
2.1.3. ANTECEDENTES LOCALES	21
2.2. BASES TEÓRICAS	22
2.2.1. ADOBE	22
2.2.2 ENSAYO DE RESISTENCIA A LA COMPRESIÓN	23

2.2.3. BAMBÚ	. 25
2.3. DEFINICIONES CONCEPTUALES	. 29
2.4. HIPÓTESIS	. 30
2.4.1. HIPÓTESIS GENERAL	. 30
2.4.2. HIPÓTESIS ESPECIFICA	. 30
2.5. VARIABLES	. 30
2.5.1. VARIABLE DEPENDIENTE	. 30
2.5.2. VARIABLE INDEPENDIENTE	. 30
2.6. OPERACIONALIZACIÓN DE VARIABLES	. 31
CAPITULO III	. 32
METODOLOGIA DE LA INVESTIGACIÓN	. 32
3.1. TIPO DE INVESTIGACIÓN	. 32
3.1.1. ENFOQUE	. 32
3.1.2. ALCANCE O NIVEL	. 32
3.1.3. DISEÑO	. 32
3.2. POBLACIÓN Y MUESTRA	. 33
3.2.1. POBLACIÓN	. 33
3.2.2. MUESTRA	. 33
3.3. TÉCNICAS E INSTRUMENTOS DE RECOLECCIÓN DE DATOS	33
3.3.1. PARA LA RECOLECCIÓN DE DATOS	. 33
3.3.2. PARA LA PRESENTACIÓN DE DATOS	. 38
3.3.3. PARA EL ANÁLISIS E INTERPRETACIÓN DE DATOS	. 38
CAPITULO IV	. 39
RESULTADOS	. 39
4.1. PROCESAMIENTO DE DATOS	. 39
4.2. CONTRASTACIÓN Y PRUEBA DE HIPÓTESIS	. 44
4.2.1. HIPÓTESIS GENERAL	. 44
4.2.2. HIPÓTESIS ESPECIFICA 1	. 47
4.2.3. HIPÓTESIS ESPECIFICA 2	. 50
4.2.4. HIPÓTESIS ESPECIFICA 3	. 53
CAPITULO V	. 57
DISCUSIÓN DE RESULTADOS	. 57
CONCLUSIONES	. 59

RECOMENDACIONES	61
REFERENCIAS BIBLIOGRÁFICAS	62
ANEXOS	65

ÍNDICE DE TABLAS

Tabla 1 Propiedades y características del bambú usado en el estudio 28
Tabla 2 Muestras realizados
Tabla 3 F´m del adobe patrón
Tabla 4 Resultados del F´m del adobe patrón
Tabla 5 F'm del adobe con 15% de fibras orgánicas de bambú
Tabla 6 Resultados del F´m del adobe con 15% de fibras orgánicas de bambú
40
Tabla 7 F´m del adobe con 20% de fibras orgánicas de bambú
Tabla 8 Resultados del F´m del adobe con 20% de fibras orgánicas de bambú
42
Tabla 9 F'm del adobe con 30% de fibras orgánicas de bambú
Tabla 10 Resultados del F´m del adobe con 30% de fibras orgánicas de bambú
43
Tabla 11 F´m del adobe patrón y el promedio de los adobes elaborados con
15%, 20% y 30% de fibras orgánicas de bambú
Tabla 12 Comparación de resultados del adobe patrón y de los adobes
elaborados con 15%, 20% y 30% de fibras orgánicas de bambú 45
Tabla 13 Pruebas de normalidad de los F´m adobe patrón y el promedio de
15%, 20% y 30% con fibras orgánicas de bambú
Tabla 14 Prueba t para especímenes
Tabla 15 F´m en los ensayos de adobe patrón y con 15% de fibras orgánicas
de bambú
Tabla 16 Comparativa de los grupos de estudio sin y con 15% de fibras
orgánicas de bambú
Tabla 17 Pruebas de normalidad de los grupos de estudio sin y con 15% de
fibras orgánicas de bambú49
Tabla 18 Prueba t para especímenes
Tabla 19 F´m en los ensayos de adobe patrón y con 20% de fibras orgánicas
de bambú
Tabla 20 Comparativa de los grupos de estudio sin y con 20% de fibras
orgánicas de bambú 51

Tabla 21 Pruebas de normalidad de los grupos de estudio sin y con 20% de
fibras orgánicas de bambú
Tabla 22 Prueba t para especímenes
Tabla 23 F´m en los ensayos de adobe patrón y con 30% de fibras orgánicas
de bambú
Tabla 24 Comparativa de los grupos de estudio sin y con 30% de fibras
orgánicas de bambú 54
Tabla 25 Pruebas de normalidad de los grupos de estudio sin y con 30% de
fibras orgánicas de bambú
Tabla 26 Prueba t para especímenes 55

ÍNDICE DE FIGURAS

Figura 1 Cinta al barro	24
Figura 2 Ensayo de resistencia seca	24
Figura 3 Prueba de quiebre	25
Figura 4 Usos del Bambú	27
Figura 5 Caña del Bambú	27
Figura 6 imagen satelital de la extracción	34
Figura 7 Lugar de extracción del material	34
Figura 8 Materiales usados para la excavación	35
Figura 9 Proceso de excavación de la calicata	35
Figura 10 Máquina de rotura	37
Figura 11 Histograma de los F´m del adobe patrón	40
Figura 12 Histograma de los F´m del adobe con 15% de fibras orgánicas	de
bambú	41
Figura 13 Histograma de los F´m del adobe con 20% de fibras orgánicas	de
bambú	42
Figura 14 Histograma de los F´m del adobe con 30% de fibras orgánicas	de
bambú	44
Figura 15 F´m en los ensayos de adobe patrón y el promedio	45
Figura 16 F´m en los ensayos de adobe patrón y con 15% de fibras orgánic	as
de bambú	48
Figura 17 F´m en los ensayos de adobe patrón y con 20% de fibras orgánic	as
de bambú	51
Figura 18 F´m en los ensayos de adobe patrón y con 30% de fibras orgánic	as
de bambú	54
Figura 19 Lugar de extracción de la muestra de suelo	81
Figura 20 Equipos para excavación	81
Figura 21 Proceso de excavación	82
Figura 22 Proceso de excavación	82
Figura 23 Proceso de excavación	83
Figura 24 Proceso de excavación	83
Figura 25 Extracción de la muestra de suelo	84
Figura 26 Pesaje de los tamices	84

Figura 27	Pesaje de la muestra de suelo	85
Figura 28	Vibrado manual de los tamices	85
Figura 29	Pesaje de las muestras de suelos retenidas en el tamiz	86
Figura 30	Pesaje de la muestra de suelo pasante del tamiz N° 40	86
Figura 31	llenado de muestra de suelo en la Casagrande	87
Figura 32	Acanalado de muestra de suelo en la Casagrande	87
Figura 33	Golpes del suelo con la Casagrande	88
Figura 34	Comprobación del cierre del suelo con el vernier	88
Figura 35	Ensayo de limite plástico del suelo	89
Figura 36	Pesaje de las muestras elipsoides del suelo	89
Figura 37	elaboración de las bolitas de barro	90
Figura 38	Muestras de bambú	90
Figura 39	Pesaje del bambú en un 15%	91
Figura 40	Pesaje del bambú en un 20%	91
Figura 41	Pesaje del bambú en un 30%	92
Figura 42	Selección de tierra para la elaboración del adobe	92
Figura 43	Elaboración del adobe patrón	93
Figura 44	elaboración de adobe con adiciones de 15%, 20% y 30% de Fibr	as
orgánicas	de bambú	93
Figura 45	Desmoldeo de las muestras de adobe patrón y con adiciones	de
15%, 20%	y 30% de fibras orgánicas de bambú	94
Figura 46	medidas de los adobes desmoldados	94
Figura 47	Secado de los adobes	95
Figura 48	Secado de los adobes con adición de 15% de Fibras orgánicas	de
bambú		95
Figura 49	secado de los adobes con adición de 20% de Fibras orgánicas	de
bambú		96
Figura 50	secado de los adobes con adición de 30% de Fibras orgánicas	de
bambú		96
Figura 51	Ensayo de resistencia a la compresión del adobe después de	28
días de se	cado	97
Figura 52	Rotura de los adobes patrón	97

Figura 53 Ensayo de resistencia a la compresión del adobe con adición del
15% de Fibras orgánicas de bambú después de 28 días de secado 98
Figura 54 rotura del adobe con adición del 15% de Fibras orgánicas de bambú
después de 28 días de secado
Figura 55 Ensayo de resistencia a la compresión del adobe con adición del
15% de Fibras orgánicas de bambú después de 28 días de secado 99
Figura 56 rotura del adobe con adición del 20% de Fibras orgánicas de bambú
después de 28 días de secado99
Figura 57 Ensayo de resistencia a la compresión del adobe con adición del
15% de Fibras orgánicas de bambú después de 28 días de secado 100
Figura 58 rotura del adobe con adición del 20% de Fibras orgánicas de bambú
después de 28 días de secado 100

RESUMEN

La investigación buscó determinar la mejora de la resistencia a la compresión de un adobe al añadirle fibras orgánicas de bambú en el distrito de Amarilis – Huánuco – 2023. Tras los ensayos de laboratorio los resultados obtenidos muestran que existe mejora significativamente la resistencia a la compresión de un adobe hecho con fibras orgánicas de bambú en el distrito de Amarilis – Huánuco – 2023, donde para el grupo del adobe patrón se tuvo un F'm de 11.8836 kg/cm², y luego de incorporar 15% de fibras orgánicas de bambú se tuvo un F´m de 13.7466 kg/cm², cuando se incorpora 20% de fibras de la madera bambú se tuvo un F´m de 14.9386 kg/cm² y al incorporar 30% de fibras de la madera bambú se tuvo un F´m de 15.8676 kg/cm², todos estos en 28 días de edad, demostrando de esta manera tanto experimental mediante resultados de laboratorio como se puede ver en nuestros anexos y de manera metodológica en nuestra contrastación de hipótesis donde se obtuvo el valor de la significancia p=0.002<0.05 cumpliendo con el valor de la t de student, demostrando así que mejorará significativamente la resistencia a la compresión del adobe al añadirle fibras orgánicas de bambú en el distrito de Amarilis – Huánuco – 2023.

Palabras clave: Adobe, esfuerzo de comprensión, fibras orgánicas, suelo, bambú.

ABSTRACT

The research sought to determine the improvement in the compression resistance of an adobe by adding organic bamboo fibers in the district of Amarilis – Huánuco – 2023. After laboratory tests, the results obtained show that there is a significant improvement in the compression resistance of an adobe made with organic bamboo fibers in the district of Amarilis - Huánuco - 2023, where for the pattern adobe group there was an F'm of 11.8836 kg/cm2, and after incorporating 15% of organic bamboo fibers it was an F'm of 13.7466 kg/cm2, when incorporating 20% of bamboo wood fibers there was an F'm of 14.9386 kg/cm2 and when incorporating 30% of bamboo wood fibers there was an F'm of 15.8676 kg/cm2, all of these at 28 days of age, demonstrating in this way both experimentally through laboratory results as can be seen in our annexes and methodologically in our hypothesis testing where the significance value p=0.002 was obtained. <0.05, complying with the student's t value, thus demonstrating that the compressive strength of adobe will significantly improve by adding organic bamboo fibers in the district of Amarilis – Huánuco – 2023.

Keywords: Adobe, understanding effort, organic fibers, soil, bamboo.

INTRODUCCIÓN

La construcción sostenible y la búsqueda de materiales alternativos que sean respetuosos con el medio ambiente y eficientes desde el punto de vista estructural son imperativos en la actualidad. En este contexto, el adobe ha surgido como una opción valiosa, destacando por su abundancia, bajo costo y baja huella ambiental. Sin embargo, uno de los desafíos fundamentales asociados con el adobe es su resistencia a la compresión, aspecto crítico para garantizar la durabilidad y estabilidad de las estructuras construidas con este material.

En este trabajo, nos embarcamos en una investigación centrada en la mejora de la resistencia a la compresión del adobe, mediante la incorporación de fibras orgánicas provenientes del bambú, ya que este es conocido por su crecimiento rápido y propiedades mecánicas notables, emerge como una opción prometedora para fortalecer el adobe, ofreciendo así una solución innovadora y sostenible.

A lo largo de estas páginas del estudio, exploraremos el proceso de fabricación de bloques de adobe mejorados con fibras de bambú, evaluaremos sus propiedades mecánicas y discutiremos el impacto potencial de esta mejora en la construcción de estructuras resistentes y sostenibles. En un mundo donde la sostenibilidad y la eficiencia son esenciales, esta investigación representa un paso significativo hacia la innovación en la construcción con materiales tradicionales, ofreciendo nuevas perspectivas para el futuro de la edificación ecológica y resistente.

CAPÍTULO I

PROBLEMA DE INVESTIGACIÓN

1.1. DESCRIPCIÓN DEL PROBLEMA BASE

La tierra es el material usado para construir más accesible para el hombre. Las casas se construyeron primero apilando piedras naturales y luego combinando con el barro y colocando un techo de madera cubierto con una gruesa capa de paja. El hombre descubrió que donde no había piedras, podían reemplazarse con tierra húmeda que había sido amasada a mano y secada al sol. Igarashi (2009) menciona que al adobe le llamamos materiales de construcción no quemados a los hechos de tierra hecha en forma de ladrillos, compuesta de arena, limo, arcilla, fibras orgánicas y agua en proporciones adecuadas.

Estas construcciones de adobe son muy económicas y accesibles para la población de escasos recursos, además si están bien realizados y elaborados teniendo en cuenta la Norma E-080 del RNE estos proyectos son muy resistentes sísmicamente. Pero en la gran mayoría de las zonas donde se realiza a nivel nacional y en nuestra región Huánuco se hace de manera empírica y con desconocimiento volviéndolos vulnerables frente a agentes externos como la humedad.

Así mimo Houben y Guillard (1994) mencionan que hay un 30 % de la población mundial que sigue viviendo en construcciones elaboradas con adobe y el 50 % de los países en desarrollo población rural y población urbana un 20% viven en viviendas elaboradas de adobe.

El distrito de amarilis presenta zonas con construcciones tradicionales es decir con construcciones hechos con abobe y tapial, que en su mayoría no se elaboran contemplando la norma E-0.80 del reglamento nacional de edificaciones; estas construcciones pueden visualizarse fácilmente zonas ubicadas en el distrito de Amarilis como por ejemplo estos lugares donde se observa esta problemática frecuentemente por la informalidad en estas construcciones tradicionales con adobe y tapial son los asentamientos humanos como San Luis sector 1,2,3,4,5,6,7, la urbanización Santa Elena y asentamiento humano Llicua y el centro poblado la esperanza; la mayoría de

estas viviendas son producto de una autoconstrucción careciendo de esta manera de toda supervisión por parte de las autoridades. A esto se suma el desconocimiento que se tiene para poder añadir materiales al adobe para brindarle estabilización y mayor resistencia, garantizando así un buen comportamiento frente a eventos sísmicos.

Por lo que la presente investigación pretende usar al bambú como material para añadir al adobe, ya es una planta herbácea como leñosa que es muy resistente las cuales tienen propiedades físico-mecánicas como la flexibilidad resistencia a la flexión y pueden ser usadas para construir viviendas, embarques, materiales textiles, medicinales, etc., ya que el adobe convencional no tiene mucha resistencia a la comprensión axial ante un evento sísmico por ende la investigación busca mejorar las propiedades mecánicas del adobe con la adición de fibras orgánicas de bambú, proponiendo dentro del diseño de mezcla en función de su peso seco diferentes porcentajes de estas fibras con la finalidad de dar estabilidad, rigidez y sobre todo resistencia.

1.2. FORMULACIÓN DEL PROBLEMA

1.2.1. PROBLEMA GENERAL

¿En qué medida mejora la resistencia a la compresión del adobe al añadirle fibras orgánicas de bambú en el distrito de Amarilis – Huánuco – 2023?

1.2.2. PROBLEMAS ESPECÍFICOS

- ¿En qué medida mejora la resistencia a la compresión del adobe al añadirle 15% de fibras orgánicas de bambú en el distrito de Amarilis
 Huánuco – 2023?
- ¿En qué medida mejora la resistencia a la compresión del adobe al añadirle 20% de fibras orgánicas de bambú en el distrito de Amarilis
 Huánuco – 2023?
- ¿En qué medida mejora la resistencia a la compresión del adobe al añadirle 30% de fibras orgánicas de bambú en el distrito de Amarilis
 Huánuco – 2023?

1.3. OBJETIVOS

1.3.1. OBJETIVO GENERAL

Determinar la mejora de la resistencia a la compresión de un adobe al añadirle fibras orgánicas de bambú en el distrito de Amarilis – Huánuco – 2023.

1.3.2. OBJETIVOS ESPECÍFICOS

- Determinar la mejora de la resistencia a la compresión del adobe al añadirle 15% de fibras orgánicas de bambú en el distrito de Amarilis
 Huánuco – 2023.
- Determinar la mejora de la resistencia a la compresión del adobe al añadirle 20% de fibras orgánicas de bambú en el distrito de Amarilis
 Huánuco – 2023.
- Determinar la mejora de la resistencia a la compresión del adobe al añadirle 30% de fibras orgánicas de bambú en el distrito de Amarilis
 Huánuco – 2023.

1.4. JUSTIFICACIÓN DE LA INVESTIGACIÓN

1.4.1. JUSTIFICACIÓN TEÓRICA

La investigación presentó aspectos favorables en el desarrollo de la investigación de adobes con la adición de fibras orgánicas de bambú.

Dando a conocer la propiedad mecánica (resistencia a la compresión). Para realizar el presente estudio se usará como referencias a la normativa del reglamento nacional de edificaciones, que es la E-0.80 que lleva como denominación el diseño y construcción con tierra reforzada, ya que estas construcciones son del tipo convencional y muy usadas en nuestro medio, además para complementar correctamente el proyecto existe mucha información relacionada esta y están justificadas en nuestros antecedentes, bases teóricas y definiciones conceptuales.

1.4.2. JUSTIFICACIÓN PRÁCTICA

El distrito de Amarilis donde se planteó este proyecto se puede visualizar dentro de su población muchas construcciones de estas características y con este material tradicional, pero también se puede criticar que en su gran mayoría lo hacen con desconocimientos sin tener en cuenta incluso los materiales correctos y el proceso de elaboración adecuada. Por lo que esta investigación pretende dar una alternativa de mejora del adobe mejorando así el comportamiento mecánico del adobe (F´m) ayudando así a ver su capacidad de resistencia a situaciones sísmicas y también ayudara a contribuir el uso de fibras de bambú en el adobe para una mejor construcción para sus viviendas. Estas fibras orgánicas de bambú que se adicionaran buscan mejorar las propiedades y características de un adobe convencional, buscando ser una opción válida para los pobladores.

1.4.3. JUSTIFICACIÓN METODOLÓGICA

El estudio tuvo un diseño cuasi experimental, y será del tipo explicativa. Es decir se formarán grupos con las muestras respectivas, donde habrá un grupo de control y otro de prueba donde se le adicionará los diferentes porcentajes de fibras orgánicas de bambú, estos diferentes bloques serán sometidas a ensayos en laboratorio para obtener los datos verídicos, luego se utilizará una serie de software que nos ayudará a procesar y recolectar datos para así estimar la capacidad de resistencia del adobe con fibras de bambú con ello pretender su resistencia a la capacidad de soportar efectos sísmicos que puede sufrir el adobe.

1.5. LIMITACIONES DE LA INVESTIGACIÓN

Las limitaciones que presentó el estudio fueron mínimas, así mismo se detalla a continuación:

- A los adobes solo se le añadió fibras de bambú en diferentes porcentajes.
- El estudio solo realizó el ensayo a la compresión de los adobes elaborados con fibras orgánicas de bambú.

1.6. VIABILIDAD DE LA INVESTIGACIÓN

Rodríguez (2018) menciona que si una idea de investigación no se considera viable, no puede realizarse y debe rechazarse.

- Se contó con cantidad de información bibliográfica, con manuales, reglamentos tanto nacionales e internacionales, así como también libros y tesis relacionados al tema.
- La investigación permitió mejorar las propiedades del adobe con la incorporación de fibras de bambú y así los habitantes que viven en el distrito de amarilis de la ciudad de Huánuco tendrán viviendas de adobe más resistentes a los efectos sísmicos.
- Con esta investigación se obtuvo adobes eco amigables donde el uso de bambú es una planta que ayudara a mejorar sus propiedades mecánicas y no dañaran al medio ambiente

CAPÍTULO II

MARCO TEÓRICO

2.1. ANTECEDENTES DE LA INVESTIGACIÓN

2.1.1. ANTECEDENTES INTERNACIONALES

Ruiz (2019) en la tesis titulada "Conformación de bloques de adobe con residuos de agave Angustifolia Haw. Estrategia para el desarrollo local sustentable en Santa María La Asunción, Zumpahuacán, Estado de México". La investigación tiene como principal objetivo Promover el desarrollo sustentable de la región de Santa María la Asunción, Zumpahuacan, México a través de la producción de adobes con fibra de agave. Los resultados obtenidos son que al Agregar fibras de bagazo de Agave Angustifolia Haw proporciona F´m. Esto significa una mayor capacidad de carga vertical de la pared que es un 35% superior a los adobes cocidos tradicionales. 18% adobe de bagazo, longitud de fibra promedio 50 mm, orientación aleatoria. El estudio concluye que los ladrillos calcinados reforzados con bagazo de agave son más livianos que los adobes convencionales, pero tienen una mayor absorción de humedad. Las condiciones climáticas (semi cálidas, semi húmedas) en el área de estudio son insignificantes.

2.1.2. ANTECEDENTES NACIONALES

Arteaga y Wong (2020) en la tesis titulada "Propiedades físicas y mecánicas del adobe con adición de fibra de bambú en el centro poblado Cambio Puente de la ciudad de Chimbote, Santa – Áncash- 2020". La investigación tiene como objetivo principal Medición de Propiedades Mecánicas de Adobe con Adición de Fibra de Bambú en Centro Poblado Cambio Puente, Ciudad de Santa Chimbote - Ancash-2020. Teniendo como resultados favorables donde los adobes con la adición de (5,10 y 15) % de fibra de bambú son mejores que los adobes convencionales siendo el 10% de fibras de bambú la más sobresaliente en los diferentes resultados en los ensayos.

Del Rio (2022) en la tesis titulada "Incorporación de fibra de bambú para el mejoramiento de las propiedades mecánicas del adobe, Pelatana, Huancavelica, 2022". La investigación tiene como objetivo principal en la determinación de propiedades mecánicas del adobe combinado con fibra de bambú, Pelatana, Huancavelica, 2022. La investigación concluye que fibra de Bambú mejoro con la adición del 4 %, siendo este un valor de 31.73 kg/cm², en tanto que cuando se le añadió un 6 % y 8 % donde la resistencia disminuye notablemente.

Mosqueira (2019) en la tesis titulad "Incidencia de la fibra vegetal paja ichu en la resistencia mecánica del adobe en el distrito de Cajamarca". Tiene como objetivo principal Determinación del efecto de la fibra vegetal de paja de Ichu en la resistencia axial de los adobes en la zona de Cajamarca. Los resultados obtenidos son que el adobe sin paja, tipo A (0%), tiene un esfuerzo de compresión admisible del adobe F'm= 8.57 Kg/cm²; los adobe con paja tipo B (0.40 %), C (0.80 %) y D 1.20 %) tienen esfuerzo de compresión admisible del adobe F'm (8.73 Kg/cm², 10.39 Kg/cm² y 9.43 Kg/cm²) respectivamente.

2.1.3. ANTECEDENTES LOCALES

Omonte y Chacón (2019) en la tesis titulad "Uso de diferentes dosis de residuos agroindustriales (bagazo de caña y viruta) como aditivos en la fabricación de adobes ecoeficientes". Tiene como objetivo principal Determinación de los efectos técnicos de los subproductos agroindustriales de bagazo y astillas de eucalipto como aditivos en la producción de adobe ecológicamente eficiente. Los resultados obtenidos son que el bagazo y las astillas de eucalipto en agricultura son efectivos como aditivos para la producción de adobes ecológicamente eficientes, con valores óptimos de 2% y 3%, respectivamente. Concluyendo la investigación que el residuo agroindustrial de viruta de eucalipto influye como aditivo en la fabricación de adobes ecoeficientes encontrando el valor óptimo al 2 % que en comparación con los adobes tradicionales representa un incremento del 92,64 % más en su resistencia.

2.2. BASES TEÓRICAS

2.2.1. ADOBE

Morales et al. (1993) consideran que la construcción de tierra viene siendo usada desde las épocas pre hispánicas donde se puede observar en las ruinas de Chan Chan, Paramonga, Pachacámac, Etc.

Durante del comienzo de nuestra vida republicana. La construcción con adobe constituyo el principal sistema constructivo de palacios, solares y viviendas populares, que todavía funcionan como tales, desafiando a los rigores del tiempo y movimientos sísmicos sin sufrir daños significativos

Hoz et al. (2003) mencionan que durante el comienzo de nuestra vida republicana es sistema constructivo principal fue el adobe como base a construcciones como palacios, viviendas populares que aún siguen funcionando desafiando a los rigores del tiempo y los movimientos de tierra (temblores) sin sufrir daños significativos. Mezcla de barro con paja y de vez en cuando con guijos moldeada de forma prismática con una dimensión usada en España por 10 x 20 x 33 o 35 cm que esto viene secada al aire.

La norma E.080 (2017) define el adobe como un bloque macizo de tierra sin cocer, el cual puede contener paja u otro material que mejore su estabilidad frente a agentes externos.

Gernot (2005) Los bloques de barro que se fabrican a mano y se echa en moldes y se dejan secar al aire libre. Se agregan estabilizadores a los bloques de barro para mejorar su resistencia a factores externos.

2.2.1.1. FORMAS Y DIMENSIONES

Norma E-080, (2017) nos menciona que:

Los adobes podrán ser de planta cuadrada o rectangular y en el caso de encuentros con ángulos diferentes de 90°, de formas especiales. Sus dimensiones deberán ajustarse a las siguientes proporciones:

a) La muestra de adobe cúbico no debe exceder los 0,40 m.

- b) Los bloques de adobe rectangulares deben tener el doble de largo que de ancho.
- c) La altura del bloque de adobe debe estar entre 8 cm y 12 cm

2.2.2. ENSAYO DE RESISTENCIA A LA COMPRESIÓN

Norma E-080 (2017) nos menciona que los ensayos de resistencia a la compresión de los bloques de adobe deben de cumplir ciertas características como:

- a) El ensayo de compresión del material se mide en cubos de 0.1 m de arista.
- b) El esfuerzo último se calcula conforme a la expresión siguiente: 2 fo 1.0 MPa 10.2 kg/cm².

$$F'm = \frac{P}{A}$$

Donde:

F'm: Resistencia a la compresión axial (kg/cm²)

P: carga aplicada (kg)

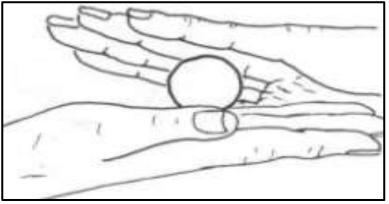
A: Área de aplicación de la carga (cm²)

2.2.2.1. PRUEBAS IN SITU DE LA TIERRA PARA LA ELABORACIÓN DE ADOBES

✓ Prueba de cinta de barro

Norma E-080 (2017) nos indica que para poder ver presencia de arcilla en nuestra tierra previamente se puede hacer la prueba de cinta de barro, que se estima el tiempo de realizado de 10 minutos. Este proceso consiste en toma una parte de barro húmedo que nos permite hacer un rollo de un diámetro de 12 mm, luego se aplana con los dedos hasta formar una cinta de espesor de 4 mm, donde se deja suspendido. Si esta cinta logra llegar entre 20 y 25 cm de longitud se puede decir que hay presencia de arcilla pero si es corta en menos de 10 cm se dice que hay muy poca cantidad de arcilla.

Figura 1
Cinta al barro


Nota. Se muestra el proceso de la cinta de barro. Fuente: E.080 (2017).

✓ Prueba de presencia de arcilla o resistencia seca

Norma E-080 (2017) nos indica que esta prueba consiste en hacer 04 bolas pequeñas con la mezcla del suelo a utilizar más agua. Así mismo estas pequeñas bolas debe caber en las palmas de las manos, se debe de realizar de dar esta forma din tener deformaciones algunas, para que al momento de secarse tenga esa forma.

El tiempo de secado que debe de tener estas pequeñas bolas debe ser 48 h, y durante este tiempo no debe de estar en contacto con ningún fluido o algo que pueda alterar su proceso, como el agua de lluvia entre otros.

Figura 2
Ensayo de resistencia seca

Nota. Se indica el proceso de la prueba de resistencia. Fuente: E.080 (2017).

Consiste en aplastar 04 esferas secas de tierra. Después del tiempo de secado se aplasta fuertemente con los dedos como se

muestra a continuación, todo esto con una sola mano. Si se rompiera una de las 04 esferas se tiene que volver a repetir el proceso, es decir volver a realizar las bolas con las mismas condiciones.

Figura 3

Prueba de quiebre

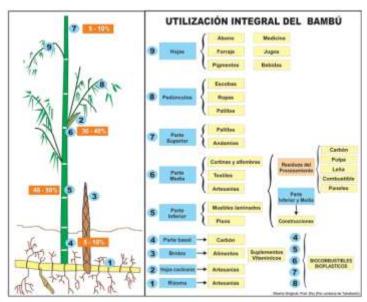
Nota. Se indica el proceso de la prueba de quiebre. Fuente: E.080 (2017).

2.2.3. BAMBÚ

Ordóñez et al. (s/f) nos mencionan que el bambú es una planta conocida como la planta mil usos, ya que de ella se puede obtener materiales de construcción, alimento, celulosa para papel, ropa y medicina al igual que otras plantas protege el suelo y captura bióxido de carbono. El bambú alcanza hasta 60 m de altura y tiene un diámetro de 30 cm cerca de la base, el bambú viene ser de una familia gramíneas (Poaceae). Algunos son herbáceos y otros leñosos, que desarrollan varios culmos (cañas o tallos) al año.

2.2.3.1. CARACTERÍSTICAS PARA LAS UTILIDADES DEL BAMBÚ

Ordóñez et al. (s/f) nos mencionan que por sus propiedades mecánicas, principalmente flexibilidad y resistencia a la flexión, es ampliamente utilizado en la fabricación de muebles, instrumentos musicales, herramientas, aparejos de pesca y recolección de frutas.


Se utiliza en la construcción de casas y barcos por su resistencia y diámetro de tronco o varilla.

Sus propiedades químicas los hacen útiles en la producción de alimentos y productos farmacéuticos, la producción de papel y otros productos industriales y, más recientemente, la producción de electricidad.

El Ministerio de agricultura (2008) nos menciona que:

- Raíces y rizomas: El bambú se caracteriza por raíces delgadas y densas que crecen sobre rizomas que pueden convertirse monopodiales.
- Brotes: Está cubierto con hojas de kali de varias formas, colores, texturas y tamaños, la mayoría de las cuales se pueden usar como alimento.
- Tallos: los bambúes tienen tallos huecos de 1 a 20 cm de diámetro y 5 a 25 m de alto.
- Hojas: Tiene un alto contenido en flavonas, aminoácidos y oligoelementos esenciales, se compone de hojuelas de diferentes tamaños y suele ser de color verde de intensidad variable.
- Inflorescencia: A menudo florecen en racimos. Sin embargo, también es común la floración esporádica o anual, con varias especies de diferentes edades floreciendo simultáneamente, incluso bienalmente, con claras relaciones entre la edad, el diámetro del tallo, las condiciones agrícolas, el clima y la floración, sobre todo.

Figura 4
Usos del Bambú

Nota. Usos del bambú. Fuente: Ministerio de agricultura (2008)

2.2.3.2. DESCRIPCIÓN DE LA CAÑA DE BAMBÚ

Diseño y construcción con bambú (s/f) menciona que la caña de Bambú es el tallo de la planta de bambú que por lo general es hueco y nudoso conformado por:

- a) Nudo: Parte o del tallo que lo divide en secciones por medio de diafragmas.
- b) Entrenudo: Parte de la caña que está entre dos nudos.
- c) Diafragma: Membrana rígida que forma parte del nudo y divide el interior y lo divide en secciones.
- d) Pared: Parte externa del tallo formada por tejido leñoso.

Caña del Bambú

Figura 5

Nota. Caña de bambú. Diseño y construcción con bambú, s/f, p. 5.

2.2.3.3. PROPIEDADES Y CARACTERÍSTICAS DEL BAMBÚ USADO

El bambú que se usó para el desarrollo de las muestras de adobe es de la Castillo Grande (Tingo María); así mismo la siguiente tabla detalla las características y propiedades de este material:

Tabla 1Propiedades y características del bambú usado en el estudio

PROPIEDAD / CARACTERÍSTICA	VALOR TÍPICO	UNIDA
Aspecto Físico		
Color	Verde, amarillo, marrón	
Textura superficial	Lisa	
Longitud promedio de las fibras	20 - 30	mm
Diámetro promedio de los tallos	20 - 40	mm
Peso específico	0.4 - 0.8	g/cm³
Aspecto Químico		
Contenido de humedad	8 - 12	%
Contenido de celulosa	35 - 45	%
Contenido de lignina	22 - 29	%
Contenido de hemicelulosa	20 - 30	%
Propiedades Mecánicas		
Resistencia a la tracción	80 - 150	MPa
Módulo de elasticidad	8,000 - 20,000	MPa
Dureza Janka	8,000 - 15,000	N
Resistencia a la flexión	100 - 200	MPa
Contracción volumétrica	0.15 - 0.3	%
Otras Características		
Velocidad de crecimiento	30 - 100	cm/día
Periodo de madurez	3 - 5 años	
Renovabilidad	Alta	
Sostenibilidad	Alta	

Nota. Características del bambú. Fuente: Diseño y construcción con bambú (s/f).

2.3. DEFINICIONES CONCEPTUALES

- Arcilla: La E.080 (2017) nos define que es el único material activo en el suelo y es indispensable. Cuando se combina con el agua y actúa plásticamente, formando con partículas del suelo una lechada que cuando se seca, adquiere resistencia a la sequía y se convierte en material de construcción.
- Limo: La E.080 (2017) nos indica que es una composición inerte formada por partículas de roca con un tamaño de 0,002 mm a 0,08 mm, material estable y no pegajoso en contacto con el agua.
- Agave: García (2007) nos define que los agaves son plantas perennes con hojas dispuestas en espiral en forma de asterisco en los extremos de los tallos, que pueden ser cortas, a solo unos centímetros del suelo, largas y erectas.
- Secado: La E.080 (2017) nos menciona que es la evaporación del agua está presente en la tierra húmeda. Este proceso debe controlarse para que el agua se evapore muy lentamente a medida que la arcilla y el limo se contraen y ganan fuerza.
- Aserrín: Real Academia Española (2005) indica que el conjunto de partículas que se separan de la madera durante el aserrado.
- Tierra: La E.080 (2017) nos menciona que los materiales de construcción constan de cuatro componentes básicos: arcilla, limo, arena fina y arena gruesa.
- Ichu: Mamani y Pinazo (2019) menciona que el Ichu, icho, paja brava, o paja ichu (stipa ichu), es una gramínea de los Andes peruanos, también se encuentra en zonas similares de Venezuela, Bolivia, Colombia, Ecuador, Chile y Argentina. También está presente en las Sierras de México y Guatemala.
- Muro: La E.080 (2017) nos indica que se trata de un muro de arriostramiento con estabilidad lateral asignada a componentes de arriostramiento y que contiene elementos de rigidización.

2.4. HIPÓTESIS

2.4.1. HIPÓTESIS GENERAL

Mejorará significativamente la resistencia a la compresión del adobe al añadirle fibras orgánicas de bambú en el distrito de Amarilis – Huánuco – 2023.

2.4.2. HIPÓTESIS ESPECIFICA

- Mejorará significativamente la medida a la resistencia a la compresión del adobe al añadirle 15% de fibras orgánicas de bambú en el distrito de Amarilis – Huánuco – 2023.
- Mejorará significativamente la medida a la resistencia a la compresión del adobe al añadirle 20% de fibras orgánicas de bambú en el distrito de Amarilis – Huánuco – 2023.
- Mejorará significativamente la medida a la resistencia a la compresión del adobe al añadirle 30% de fibras orgánicas de bambú en el distrito de Amarilis – Huánuco – 2023.

2.5. VARIABLES

2.5.1. VARIABLE DEPENDIENTE

Resistencia a la compresión del adobe.

2.5.2. VARIABLE INDEPENDIENTE

Fibras orgánicas de bambú.

2.6. OPERACIONALIZACIÓN DE VARIABLES

VARIABLE	DIMENSIONES	INDICADORES	INSTRUMENTO
		Diseño de mezcla del adobe hecho con un 15% de fibras orgánicas de bambú respecto al peso seco de la mezcla.	
INDEPENDIENTE Fibras orgánicas de bambú.	prgánicas de Diseño de mezcla con fibras de polietileno de alta densidad y	mezcla. Ficha de resultados del a	
		Diseño de mezcla del adobe hecho con un 30% de fibras orgánicas de bambú respecto al peso seco de la mezcla.	granulométrico.
	esistencia a la compresión (F'c= kg/cm²)	Resistencia a la compresión del adobe hecho con un 15% fibras orgánicas de bambú respecto al peso seco de la mezcla.	
DEPENDIENTE Resistencia a la compresión del adobe.		Resistencia a la compresión del adobe hecho con un 20% fibras orgánicas de bambú respecto al peso seco de la mezcla.	Ficha de laboratorio del ensayo de resistencia a la compresión.
•		Resistencia a la compresión del adobe hecho con un 30% fibras orgánicas de bambú respecto al peso seco de la mezcla.	

CAPÍTULO III

METODOLOGÍA DE LA INVESTIGACIÓN

3.1. TIPO DE INVESTIGACIÓN

3.1.1. ENFOQUE

El estudio tuvo un enfoque cuantitativo.

Hernández et al. (2010) menciona que es una compilación de datos que se usa para probar hipótesis, con un nivel numérico y pruebas

estadísticas.

3.1.2. ALCANCE O NIVEL

La investigación fue explicativo tal como nos dice:

Hernández et al. (2010) define que los estudios explicativos van

más allá de la de lo teórico o fenómenos o lo relacionado de los

conceptos.

3.1.3. **DISEÑO**

Fue cuasi experimental:

Hernández et al. (2010) indica que se tiene una asociación

establecida y los grupos ya están establecidos de manera previa a los

ensayos.

Esquema de la investigación

GE: 01 X 03

GC: O2 O4

Donde:

GE = Grupo experimental

GC = Grupo control

O1 y O2 = Preprueba

X = Tratamiento

O3 y O4 = Post prueba

32

3.2. POBLACIÓN Y MUESTRA

3.2.1. POBLACIÓN

Estuvo conformada por 40 de adobes, donde después fueron sometidas a ensayos de laboratorio para medir su F´m y realizar su comparación posterior.

3.2.2. MUESTRA

La muestra fue no probabilística. Es decir se toma según criterio de estudio del autor y por recomendación por bibliografía de investigación. Las muestras se hicieron en función de los porcentajes de fibras de bambú, esto se puede entender mejor en la siguiente tabla.

Tabla 2 *Muestras realizados*

CANTIDAD	
10	
10	
10	
10	
10	
10	
10	

Nota. Se muestra la cantidad de muestras.

3.3. TÉCNICAS E INSTRUMENTOS DE RECOLECCIÓN DE DATOS

3.3.1. PARA LA RECOLECCIÓN DE DATOS

Se siguió con un procedimiento que se detalla de la siguiente manera:

✓ Elección de tierra:

La elección de la tierra para la preparación de especímenes de adobes se sacará del asentamiento humano San Luis sector 1, como se puede ver como referencia en la siguiente imagen.

Figura 6
Imagen satelital de la extracción

Nota. Se muestra el lugar de extracción del material.

✓ Estudio de mecánica de suelos:

El procedimiento del estudio de mecánica de suelos fue de la siguiente manera:

- Antes de comenzar la toma de muestras, es crucial realizar una planificación detallada que incluya la ubicación de las calicatas y la profundidad a la que se tomarán las muestras.
- 2. Selecciona las ubicaciones de la calicata de acuerdo con las características del lugar

Figura 7
Lugar de extracción del material

Nota. Se muestra el lugar de extracción del material.

3. Se utilizó equipos de excavación, como pico y pala, para abrir calicatas en las ubicaciones planificadas, la fecha donde se realizó la excavación fue el 01/08/2023.

Figura 8

Materiales usados para la excavación

Nota. Se muestra la pala, pico y costal para el almacenamiento.

4. Se excavó las calicatas hasta alcanzar la profundidad deseada, asegurándote de que las paredes de las calicatas estén más verticales y limpias posibles para facilitar la toma de muestras.

Figura 9

Proceso de excavación de la calicata

Nota. Se muestra el proceso de excavación de la calicata.

- La toma muestras representativas de cada capa de suelo identificada durante la excavación, asegurándote de que las muestras sean lo más homogéneas posible.
- Se etiquetó cuidadosamente cada muestra de suelo con información relevante, como la profundidad de la muestra y la ubicación de la calicata.
- 7. Las muestras se almacenaron en recipientes limpios, como costales para evitar la contaminación o la pérdida de humedad.
- 8. Posteriormente se transportaron las muestras al laboratorio lo antes posible para minimizar cualquier cambio en las propiedades del suelo.
- 9. Luego se realizó los ensayos de granulometría, límites de Atterberg y contenido de humedad. Estos ensayos son indispensables para poder realizar una adecuada de mezcla para la elaboración del adobe. Con respecto a los resultados de los ensayos de laboratorio puede ser verificado en el Anexo 03.

✓ Elaboración de las muestras de adobe:

La elaboración de las muestras de adobe se realizará con el fundamento de la norma E-0.80 del RNE que lleva por título diseño y construcción con tierra reforzada, específicamente del artículo 8 e inciso 8.1 que menciona el ensayo para medir la compresión axial de los cubos de adobe, el inciso a, especifica que para el caso de los adobes las muestras deben ser cubos de 0.1 m de arista.

Las muestras de adobe elaboradas serán primeramente hechos de manera tradicional, y luego se realizarán los especímenes con diferentes porcentajes de fibras de bambú a un 15%, 20% y 30%. Todas estas muestras deben de ser secados cubiertos del sol para evitar rajaduras y grietas por un tiempo promedio de 7 días tal como el manual de construcción del MVCS para edificaciones resistentes al sismo con adobes.

✓ Ensayo de compresión de las muestras:

Los ensayos a compresión se realizarán después de esperar el tiempo de que demora en secar el adobe elaborado recomendado por el manual de construcción (MVCS). El ensayo se realizará de manera independiente de cada uno de los bloques, es decir estos serán sometidos a una maquia de compresión axial, y se obtendrá los resultados del F´m de cada muestra ensayada, donde cada resultado debe tener una resistencia última de acuerdo a la norma E-0.80 del RNE de F´m= 10.2 kg/cm².

Figura 10

Máquina de rotura

✓ Obtención de resultados:

Los resultados se obtendrán en formatos de laboratorio que tendrán los datos necesarios y de la misma manera los resultados de los ensayos por cada uno las muestras ensayadas. Estos resultados son importantes, ya que servirán para hacer el proceso estadístico.

3.3.1.1 Instrumentos

Los instrumentos fueron:

- Formato de ensayo de granulometría.
- Formato de ensayo de límite líquido.
- Formato de ensayo de límite plástico.

- Formato de ensayo de contenido de humedad.
- Formato de ensayo de rotura a compresión de cada uno de los bloques.

Todos estos instrumentos sirven para obtener nuestros datos cuantitativos que servirán para el procesamiento específico de los datos y su construcción para nuestras hipótesis.

3.3.2. PARA LA PRESENTACIÓN DE DATOS

El desarrollo y procesamiento de los resultados se plantearon desde la toma de material hasta el procesamiento estadístico como se detalla a continuación:

Para el estudio se utilizó como libros sobre estadística y metodología de investigación.

3.3.3. PARA EL ANÁLISIS E INTERPRETACIÓN DE DATOS

Para el estudio se utilizó como bases manuales de cómo se debe elaborar el adobe, el mismo reglamento nacional de edificaciones así como normativas internaciones, que ayudaron para la elaboración y el proceso del ensayo a compresión.

CAPÍTULO IV

RESULTADOS

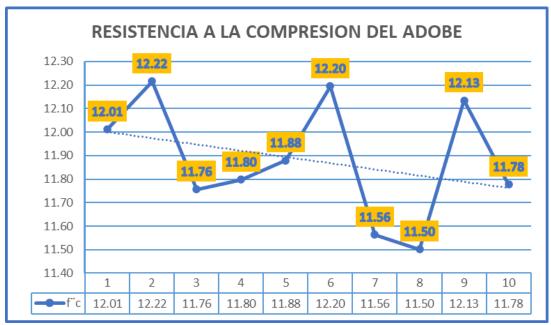
4.1. PROCESAMIENTO DE DATOS

Tabla 3 *F'm del adobe patrón*

		EDAD	CARGA		ESPECÍI	MENES		
N°	% DE BAMBU	DE ADOBE (DIAS)	MÁXIMA (Kg)	Ancho (cm)	Largo (cm)	Alto (cm)	Área (cm²)	F'm
1	0	28	1201.21	10	10	10	100	12.01
2	0	28	1221.60	10	10	10	100	12.22
3	0	28	1175.71	10	10	10	100	11.76
4	0	28	1179.79	10	10	10	100	11.80
5	0	28	1187.95	10	10	10	100	11.88
6	0	28	1219.56	10	10	10	100	12.20
7	0	28	1156.34	10	10	10	100	11.56
8	0	28	1150.22	10	10	10	100	11.50
9	0	28	1213.44	10	10	10	100	12.13
10	0	28	1177.75	10	10	10	100	11.78

Tabla 4Resultados del F´m del adobe patrón

F'm DEL ADOBE PATRÓN


N	Válido	10
N	Perdidos	0
Media		11,8836
Desvia	nción estándar	,252

Interpretación

Las tablas muestran los resultados de los F'm de las muestras del adobe patrón, donde la media es 11.8836 kg/cm², este valor ayudara en la investigación a poder constatar nuestros resultados finales si hay mejora significativa o no, el valor de la desviación estándar de 0.252 kg/cm² nos indica que los resultados están más cerca del valor de la media obtenida, indicando una variabilidad pequeña, que significa que hay poca dispersión de nuestros resultados por cada muestra, que indica que nuestros resultados no se encuentran dispersos por lo que se toma las 10 muestras sin desechar ninguna.

Figura 11

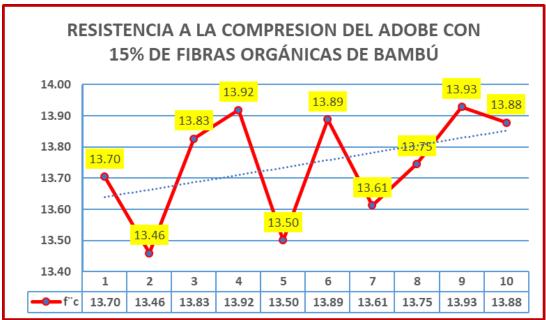
Histograma de los F´m del adobe patrón

Nota. Se observa el histograma de los ensayos de laboratorio.

Tabla 5F´m del adobe con 15% de fibras orgánicas de bambú

		EDAD	CARGA		ESPECÍI	MENES		
N°	% DE BAMBU	DE ADOBE (DIAS)	MÁXIMA (Kg)	Ancho (cm)	Largo (cm)	Alto (cm)	Área (cm²)	f"m
1	15%	28	1370.48	10	10	10	100	13.70
2	15%	28	1346.00	10	10	10	100	13.46
3	15%	28	1382.71	10	10	10	100	13.83
4	15%	28	1391.89	10	10	10	100	13.92
5	15%	28	1350.08	10	10	10	100	13.50
6	15%	28	1388.83	10	10	10	100	13.89
7	15%	28	1361.30	10	10	10	100	13.61
8	15%	28	1374.56	10	10	10	100	13.75
9	15%	28	1392.91	10	10	10	100	13.93
10	15%	28	1387.81	10	10	10	100	13.88

Tabla 6Resultados del F´m del adobe con 15% de fibras orgánicas de bambú


<u>F'm A</u>	ADOBE CON 15% DE FIBRAS ORGÁNICAS DE BAMBI	Ú
NI	Válido	10
N	Perdidos	0
Media		13,7466
Desvia	ación estándar	,173

Interpretación

Las tablas muestran los resultados de los F'm del adobe con 15% de fibras orgánicas de bambú, donde el promedio es 13.7466 kg/cm², este valor ayudara en la investigación a poder constatar nuestros resultados finales si hay mejora significativa o no, el valor de la desviación estándar de 0.173 kg/cm² nos indica que los resultados están más cerca del valor de la media obtenida, indicando una variabilidad pequeña, que significa que hay poca dispersión de nuestros resultados por cada muestra.

Figura 12

Histograma de los F'm del adobe con 15% de fibras orgánicas de bambú

Nota. Se observa el histograma de los ensayos de laboratorio.

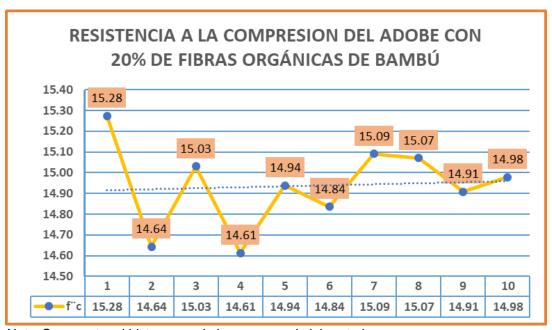
Tabla 7F'm del adobe con 20% de fibras orgánicas de bambú

		EDAD			ESPECÍI	MENES		
N°	% DE BAMB U	DE ADOB E (DIAS)	CARGA MÁXIM A (Kg)	Ancho (cm)	Largo (cm)	Alto (cm)	Área (cm²)	f'm
1	20%	28	1527.51	10	10	10	100	15.28
2	20%	28	1464.29	10	10	10	100	14.64
3	20%	28	1503.04	10	10	10	100	15.03
4	20%	28	1461.23	10	10	10	100	14.61
5	20%	28	1493.86	10	10	10	100	14.94
6	20%	28	1483.66	10	10	10	100	14.84
7	20%	28	1509.16	10	10	10	100	15.09
8	20%	28	1507.12	10	10	10	100	15.07

9	20%	28	1490.80	10	10	10	100	14.91
10	20%	28	1497.94	10	10	10	100	14.98

Tabla 8Resultados del F´m del adobe con 20% de fibras orgánicas de bambú

F'm ADOBE CON 20% DE FIBRAS ORGÁNICAS DE BAMBÚ


- NI	Válido	10
N	Perdidos	0
Media		14,9386
Desvia	ción estándar	,203

Interpretación

Las tablas muestran los resultados de los F'm del adobe con 20% de fibras orgánicas de bambú, donde la media es 14.9386 kg/cm², este valor ayudara en la investigación a poder constatar nuestros resultados finales si hay mejora significativa o no, el valor de la desviación estándar de 0.203 kg/cm² nos indica que los resultados están más cerca del valor de la media obtenida, indicando una variabilidad pequeña, que significa que hay poca dispersión de nuestros resultados por cada muestra.

Figura 13

Histograma de los F'm del adobe con 20% de fibras orgánicas de bambú

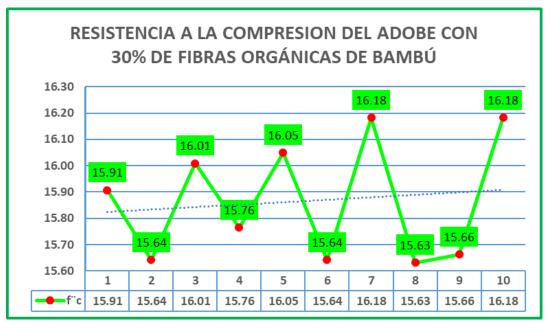
Nota. Se muestra el histograma de los ensayos de laboratorio.

Tabla 9F'm del adobe con 30% de fibras orgánicas de bambú

	a/ DE	EDAD	CARGA		ESPECÍI	MENES		
N°	% DE BAMBU	DE ADOBE (DIAS)	MÁXIMA (Kg)	Ancho (cm)	Largo (cm)	Alto (cm)	Área (cm²)	f"m
1	30%	28	1590.73	10	10	10	100	15.91
2	30%	28	1564.22	10	10	10	100	15.64
3	30%	28	1600.93	10	10	10	100	16.01
4	30%	28	1576.46	10	10	10	100	15.76
5	30%	28	1605.01	10	10	10	100	16.05
6	30%	28	1564.22	10	10	10	100	15.64
7	30%	28	1618.26	10	10	10	100	16.18
8	30%	28	1563.20	10	10	10	100	15.63
9	30%	28	1566.26	10	10	10	100	15.66
10	30%	28	1618.26	10	10	10	100	16.18

Tabla 10Resultados del F´m del adobe con 30% de fibras orgánicas de bambú

F'm ADOBE	CON 30% DE FIBRAS O	RGÁNICAS DE BAMBÚ


	Válido	10
N	Perdidos	0
Media		15,8676
Desvia	ación estándar	,227

Interpretación

Las tablas muestran los resultados de los F'm del adobe con 30% de fibras orgánicas de bambú, donde la media es 15.8676 kg/cm², este valor ayudara en la investigación a poder constatar nuestros resultados finales si hay mejora significativa o no, el valor de la desviación estándar de 0.227 kg/cm² nos indica que los resultados están más cerca del valor de la media obtenida, indicando una variabilidad pequeña, que significa que hay poca dispersión de nuestros resultados por cada muestra.

Figura 14

Histograma de los F'm del adobe con 30% de fibras orgánicas de bambú

Nota. Se muestra el histograma de los ensayos de laboratorio.

4.2. CONTRASTACIÓN Y PRUEBA DE HIPÓTESIS

4.2.1. HIPÓTESIS GENERAL

HG: Mejorará significativamente la resistencia a la compresión del adobe al añadirle fibras orgánicas de bambú en el distrito de Amarilis – Huánuco – 2023.

H0: No mejorará significativamente la resistencia a la compresión del adobe al añadirle fibras orgánicas de bambú en el distrito de Amarilis – Huánuco – 2023.

Tabla 11F'm del adobe patrón y el promedio de los adobes elaborados con 15%, 20% y 30% de fibras orgánicas de bambú

N°	MUESTRA	PROMEDIO DEL 15%, 20% Y 30%
1	12.01	14.96
2	12.22	14.58
3	11.76	14.96
4	11.80	14.77
5	11.88	14.83
6	12.20	14.79

7	11.56	14.96	
8	11.50	14.82	
9	12.13	14.83	
10	11.78	15.01	

Figura 15
F'm en los ensayos de adobe patrón y el promedio

Nota. Se muestra los F'm del adobe patrón y los elaborados con 10%, 20% y 30% de fibras de madera bambú.

Tabla 12
Comparación de resultados del adobe patrón y de los adobes elaborados con 15%, 20% y 30% de fibras orgánicas de bambú

		Estadístico	Desv. Error
	Media	11,8836	,02826
F´m DEL ADOBE PATRÓN	Desviación estándar	,25163	
	Mínimo	11,50	
	Máximo	12,22	
F'm PROMEDIO DE	Media	14,8509	,02157
LOS ADOBES CON	Desviación estándar	,12815	
15%, 20% Y 30% CON	Mínimo	14,58	
FIBRAS ORGÁNICAS DE BAMBÚ	Máximo	15,01	

Interpretación

La tabla representa los resultados de laboratorio, demostrándose que el F'm promedio de los diferentes porcentajes con fibras orgánicas de bambú es de 14.8509 kg/cm², siendo este valor muy elevado al del

adobe patrón que es de 11.8836 kg/cm², así mismo esta muestra los valores mínimos y máximos demostrando también estos son superiores al adobe patrón.

Tabla 13Pruebas de normalidad de los F´m adobe patrón y el promedio de 15%, 20% y 30% con fibras orgánicas de bambú

Pruebas de normalidad						
	Kolmogoro	v-Smir	nov ^a	Shapi	ro-Wilk	
	Estadístico	gl	Sig.	Estadístico	gl	Sig.
F'm ADOBE						
PATRÓN	,176	10	,200	,926	10	,198
			*			
F´m						
PROMEDIO DE						
LOS ADOBES						
CON 15%, 20%	,171	10	,200	,879	10	,217
Y 30% CON			*			
FIBRAS						
ORGÁNICAS						
DE BAMBÚ						

Interpretación

La prueba que hizo el estudio es la de SHAPIRO – WILK, ya que los especímenes evaluados son menores de 50, cumpliendo con la normalidad (Para el p=0.198) para el adobe patrón, y (p=0.217) para el promedio de los adobes elaborados con 15%, 20% y 30% de fibras de madera bambú.

Tabla 14Prueba t para especímenes

Prueba de	muestras empa	rejadas		
Dif	erencias			
<u>emp</u>	emparejadas			Sig.
8.6 Ji	Desv.	t	gl	(bilateral)
Media	Desviación			

F'm DEL ADOBE PATRÓN F'm PROMEDIO DE LOS					
ADOBES	-1,715	,113	-48,319	10	,002
ELABORADOS					
CON 15%, 20% Y					
30% CON FIBRAS					
ORGÁNICAS DE					
BAMBÚ					

La tabla muestra la prueba de t student que trabaja en función de las medias de los resultados obtenidos, debido a un adecuado emparejamiento de los grupos de adobe patrón y con el promedio incorporación de 3% porcentajes planteadas con fibras orgánicas de bambú, donde se muestra el valor de t=-48.319 que indica una simetría bilateral y el valor de la significancia p=0.002<0.05, que nos permite tomar la hipótesis alterna descartando la nula demostrando si mejora significativamente en la medida la compresión axial del adobe al incorporarle las fibras orgánicas de bambú.

4.2.2. HIPÓTESIS ESPECIFICA 1

HE1: Mejorará significativamente la medida a la resistencia a la compresión del adobe al añadirle 15% de fibras orgánicas de bambú en el distrito de Amarilis – Huánuco – 2023.

H0: No mejorará significativamente la medida a la resistencia a la compresión del adobe al añadirle 15% de fibras orgánicas de bambú en el distrito de Amarilis – Huánuco – 2023.

Tabla 15F´m en los ensayos de adobe patrón y con 15% de fibras orgánicas de bambú

N°	PATRÓN	15%	_
1	12.01	13.70	
2	12.22	13.46	
3	11.76	13.83	

4	11.80	13.92
5	11.88	13.50
6	12.20	13.89
7	11.56	13.61
8	11.50	13.75
9	12.13	13.93
10	11.78	13.88

Figura 16

F'm en los ensayos de adobe patrón y con 15% de fibras orgánicas de bambú

Nota. Se muestra la comparativa de los grupos de estudio sin y con 15% de fibras orgánicas de bambú

Tabla 16

Comparativa de los grupos de estudio sin y con 15% de fibras orgánicas de bambú

		Estadístico	Desv. Error
	Media	11,8836	,02826
F'm DEL ADOBE	Desviación estándar	,25163	
PATRÓN	Mínimo	11,50	
	Máximo	12,22	
F'm DE LOS	Media	13,7466	,02437
ADOBES CON 15%	Desviación estándar	,17288	
DE FIBRAS	Mínimo	13,46	
ORGÁNICAS DE BAMBÚ	Máximo	13,93	

Interpretación

La tabla representa los resultados de laboratorio, demostrándose que el F'm del adobe con 15% de fibras orgánicas de bambú es de 13.7466 kg/cm², siendo este valor muy elevado al del adobe patrón que es de 11.8836 kg/cm², así mismo esta muestra los valores mínimos y máximos demostrando también estos son superiores al adobe patrón.

Tabla 17Pruebas de normalidad de los grupos de estudio sin y con 15% de fibras orgánicas de bambú

	Pruebas de normalidad					
	Kolmogoro	ov-Smir	nov ^a	Shapir	o-Wilk	(
	Estadístico	gl	Sig.	Estadístico	gl	Sig.
F'm ADOBE						
PATRÓN	,176	10	,200*	,926	10	,198
F'm ADOBES						
CON 15% DE	,179	10	,200*	,917	10	,264
FIBRAS						
ORGÁNICAS						
DE BAMBÚ						

Interpretación

La prueba que hizo el estudio es la de SHAPIRO – WILK, ya que los especímenes evaluados son inferiores de 50, cumpliendo con la normalidad (Para el p=0.198) para el adobe patrón, y (p=0.264) para el adobe con 15% de fibras orgánicas de bambú.

Tabla 18Prueba t para especímenes

Pı	rueba de	muestras empa	arejadas		
	Dife	erencias			
	emp	arejadas	_		Sig.
	Media	Desv.	t	gl	(bilateral)
		Desviación			,

F'm DEL ADOBE	-1,805	,145	-49,452	10	,003
PATRÓN F'm DE					
LOS ADOBES					
ELABORADOS					
CON 15% DE					
FIBRAS					
ORGÁNICAS DE					
BAMBÚ					

La tabla muestra la prueba de t student que trabaja en función de las medias de los resultados obtenidos, debido a la prueba de los grupos patrón y con el adobe con 15% de fibras orgánicas de bambú, donde se demuestra el valor de la significancia p=0.003<0.05, nos permite tomar la hipótesis alterna descartando la nula demostrando si mejora significativamente el F´m de los adobes al añadirle 15% de fibras orgánicas de bambú.

4.2.3. HIPÓTESIS ESPECIFICA 2

HE2: Mejorará significativamente la medida a la resistencia a la compresión del adobe al añadirle 20% de fibras orgánicas de bambú en el distrito de Amarilis – Huánuco – 2023.

H0: No mejorará significativamente la medida a la resistencia a la compresión del adobe al añadirle 20% de fibras orgánicas de bambú en el distrito de Amarilis – Huánuco – 2023.

Tabla 19F´m en los ensayos de adobe patrón y con 20% de fibras orgánicas de bambú

N°	PATRÓN	20%	
1	12.01	15.28	
2	12.22	14.64	
3	11.76	15.03	
4	11.80	14.61	
5	11.88	14.94	
6	12.20	14.84	
7	11.56	15.09	

8	11.50	15.07
9	12.13	14.91
10	11.78	14.98

Figura 17

F'm en los ensayos de adobe patrón y con 20% de fibras orgánicas de bambú

Nota. Se muestra la comparativa de los grupos de estudio sin y con 20% de fibras orgánicas de bambú

Tabla 20Comparativa de los grupos de estudio sin y con 20% de fibras orgánicas de bambú

		Estadístico	Desv. Error
	Media	11,8836	,02826
F'm DEL ADOBE	Desviación estándar	,25163	
PATRÓN	Mínimo	11,50	
	Máximo	12,22	
F'm DE LOS	Media	14,9386	,02245
ADOBES CON 15%	Desviación estándar	,20263	
DE FIBRAS	Mínimo	14,61	
ORGÁNICAS DE BAMBÚ	Máximo	15,28	

Interpretación

La tabla representa los resultados de laboratorio, demostrándose que el F'm del adobe con 20% de fibras orgánicas de bambú es de 14.9386 kg/cm², siendo este valor muy superior al patrón que es de 11.8836 kg/cm², así mismo esta muestra los valores mínimos y máximos demostrando también estos son superiores al adobe patrón.

Tabla 21Pruebas de normalidad de los grupos de estudio sin y con 20% de fibras orgánicas de bambú

	Pruebas de normalidad						
	Kolmogoro	v-Smir	nov ^a	Shapi	Shapiro-Wilk		
	Estadístico	gl	Sig.	Estadístico	gl	Sig.	
F'm ADOBE							
PATRÓN	,176	10	,200	,926	10	,198	
			*				
F'm ADOBES							
CON 20% DE							
FIBRAS	,182	10	,200	,935	10	,267	
ORGÁNICAS			*				
DE BAMBÚ							

Interpretación

La prueba que hizo el estudio es la de SHAPIRO – WILK, ya que los especímenes evaluados son inferiores de 50, cumpliendo con la normalidad (Para el p=0.198) para el adobe patrón, y (p=0.267) para el adobe con 20% de fibras orgánicas de bambú.

Tabla 22Prueba t para especímenes

	Prueba de	muestras empa	arejadas		
		erencias parejadas			Sig.
	Media	Desv. Desviación	t	gl	(bilateral)
F'm DEL ADOBE PATRÓN F'm DE LOS ADOBES ELABORADOS	-1,832	,112	-51,361	10	,001
CON 20% DE					

FIBRAS ORGÁNICAS DE BAMBÚ

La tabla muestra la prueba de t student que trabaja en función de las medias de los resultados obtenidos, debido a la prueba de los grupos patrón y con el adobe con 20% de fibras orgánicas de bambú, donde se demuestra el valor de la significancia p=0.001<0.05, nos permite tomar la hipótesis alterna descartando la nula demostrando si mejora significativamente el F´m de los adobes al añadirle 20% de fibras orgánicas de bambú.

4.2.4. HIPÓTESIS ESPECIFICA 3

HE3: Mejorará significativamente la medida a la resistencia a la compresión del adobe al añadirle 30% de fibras orgánicas de bambú en el distrito de Amarilis – Huánuco – 2023.

H0: No mejorará significativamente la medida a la resistencia a la compresión del adobe al añadirle 30% de fibras orgánicas de bambú en el distrito de Amarilis – Huánuco – 2023.

Tabla 23F´m en los ensayos de adobe patrón y con 30% de fibras orgánicas de bambú

N°	PATRÓN	30%
1	12.01	15.91
2	12.22	15.64
3	11.76	16.01
4	11.80	15.76
5	11.88	16.05
6	12.20	15.64
7	11.56	16.18
8	11.50	15.63
9	12.13	15.66
10	11.78	16.18

Figura 18

F'm en los ensayos de adobe patrón y con 30% de fibras orgánicas de bambú

Nota. Se muestra la comparativa de los grupos de estudio sin y con 30% de fibras orgánicas de bambú

Tabla 24
Comparativa de los grupos de estudio sin y con 30% de fibras orgánicas de bambú

		Estadístico	Desv. Error
	Media	11,8836	,02826
F'm DEL ADOBE	Desviación estándar	,25163	
PATRÓN	Mínimo	11,50	
	Máximo	12,22	
F'm DE LOS	Media	15,8676	,02653
ADOBES CON 30%	Desviación estándar	,22687	
DE FIBRAS	Mínimo	15,63	
ORGÁNICAS DE BAMBÚ	Máximo	15,18	

Interpretación

La tabla representa los resultados de laboratorio, demostrándose que el F'm del adobe con 30% de fibras orgánicas de bambú es de 15.8676 kg/cm², siendo este valor muy elevado al del adobe patrón que es de 11.8836 kg/cm², así mismo esta muestra los valores mínimos y máximos demostrando también estos son superiores al adobe patrón.

Tabla 25Pruebas de normalidad de los grupos de estudio sin y con 30% de fibras orgánicas de bambú

	Pruebas de normalidad					
	Kolmogoro	v-Smir	nov ^a	Shapiı	Shapiro-Wilk	
	Estadístico	gl	Sig.	Estadístico	gl	Sig.
F'm DEL						
ADOBE	,176	10	,200	,926	10	,198
PATRÓN			*			
F'm DE LOS						
ADOBES	,181	10	,200	,924	10	,271
CON 30% DE			*			
FIBRAS						
ORGÁNICAS						
DE BAMBÚ						

Interpretación

La prueba que hizo el estudio es la de SHAPIRO – WILK, debido que los especímenes evaluados son inferiores de 50, cumpliendo con la normalidad (Para el p=0.181) para el adobe patrón, y (p=0.271) para el adobe con 30% de fibras orgánicas de bambú.

Tabla 26Prueba t para especímenes

	Prueba de	muestras emp	arejadas		
		erencias parejadas	_		O:
	Media	Desv. Desviación	t	gl	Sig. (bilateral)
F'm ADOBE PATRÓN F'm CON 30% DE FIBRAS	-1,824	,153	-52,685	10	,001
ORGÁNICAS DE BAMBÚ					

La tabla muestra la prueba de t student que trabaja en función de las medias de los resultados obtenidos, debido a la prueba de los grupos patrón y con el adobe con 30% de fibras orgánicas de bambú, donde se

demuestra el valor de la significancia p=0.001<0.05, nos permite tomar la hipótesis alterna descartando la nula demostrando si mejora significativamente el F´m de los adobes al añadirle 30% de fibras orgánicas de bambú.

CAPÍTULO V

DISCUSIÓN DE RESULTADOS

El resultado obtenido de adobes tradicionales sometidos a compresión a los 28 días tiene un valor promedio de 11.8836 kg/cm², mientras que la media del promedio de los diferentes porcentajes sometidos de 15, 20 y 30% es de 14.8509 kg/cm², demostrando que si hay una mejora del F´m de los adobes, este concuerda con el resultado de Mosqueira (2019), donde al añadir fibra orgánica en (0.40%, 0.80% y 1.20%) sus resultados son 8.73 Kg/cm², 10.39 Kg/cm² y 9.43 Kg/cm².

El resultado obtenido de los adobes tradicionales sometidos a compresión a los 28 días tiene un valor promedio de 11.8836 kg/cm², mientras que la media de los adobes con 15% de fibras orgánicas de bambú es de 13.7466 kg/cm², demostrando que si hay una mejora del F´m de los adobes, este concuerda con el resultado de Del Rio (2022), donde el resultado de haber añadido 4 % de fibras de bambú este mejora obteniendo un valor de 31.73 kg/cm², pero con un 6% y 8% estos resultados disminuyen, donde para nuestro caso hemos demostrado que a un 30% de fibras de bambú el resultado es mayor siendo un promedio 15.8676 kg/cm² superando con creces al patrón.

El resultado obtenido de los adobes tradicionales sometidos a compresión a los 28 días tiene un valor promedio de 11.8836 kg/cm², mientras que la media de los adobes con 20% de fibras orgánicas de bambú es de 14.9386 kg/cm², demostrando que si hay una mejora significativa del F´m de los adobes, este concuerda con el resultado de Ruiz (2019), donde sus resultados de su grupo patrón son de 3.3014 kg/cm², mientras que con adición de fibras orgánicas y agave lo supera obteniendo el valor de 4.1521 kg/cm², demostrando la importancia de la adición de estas.

El resultado obtenido de los adobes tradicionales sometidos a compresión a los 28 días tiene un valor promedio de 11.8836 kg/cm², mientras que la media de los adobes con 30% de fibras orgánicas de bambú es de 15.8676 kg/cm², demostrando que si hay una mejora significativa del F´m de los adobes, este concuerda con el resultado de Arteaga y Wong (2020) donde

su resultado de su adobe patrón es 10.40 kg/cm² y con incorporación de bambú al 5, 10 y 15% tuvo 16.86 kg/cm², 21.30 kg/cm² y 18.77 kg/cm² respectivamente, superando al patrón; así mismo concuerda con Omonte y Chacón (2019), donde las muestras de adobe con 2, 4 y 5 % de fibras orgánicas obtuvo 15,79 kg/cm², 12 kg/cm² y 14,10 kg/cm² respectivamente, demostrando igual que nuestra investigación la significancia de añadir fibras naturales.

CONCLUSIONES

La investigación sobre la mejora del F´m de adobes mediante la incorporación de fibras orgánicas de bambú ha proporcionado resultados alentadores y significativos. A continuación, se presentan las conclusiones clave derivadas de este estudio:

Con respecto al objetivo general los resultados del F´m del promedio de 15, 20 y 30% con adición de fibras de bambú es de 14.8509 kg/cm², siendo superior al adobe convencional que se obtuvo un F´m de 11.8836 kg/cm², concluyendo que la inclusión de fibras orgánicas de bambú en la mezcla de adobes ha demostrado un aumento notable en la resistencia a la compresión de los materiales resultantes. Este hallazgo es fundamental, ya que sugiere que la fibra de bambú actúa como un agente de refuerzo eficaz, mejorando la capacidad del adobe para soportar cargas de compresión.

Con respecto al objetivo específico 1 los resultados del F´m 15% con adición de fibras de bambú es de 13.7466 kg/cm², siendo superior al adobe convencional que se obtuvo un F´m de 11.8836 kg/cm², donde el análisis de los ensayos de laboratorio reveló una distribución uniforme de las fibras de bambú en la mezcla del adobe. Esta distribución contribuye a la formación de puentes internos que refuerzan la estructura y mejoran la cohesión del adobe, lo que resulta en una mayor resistencia a la compresión.

Con respecto al objetivo específico 2 los resultados del F´m 20% con adición de fibras de bambú es de 14.9386 kg/cm², siendo superior al adobe convencional que se obtuvo un F´m de 11.8836 kg/cm², donde se concluye que existe una relación óptima entre la cantidad de fibras de bambú añadidas y la mejora de la resistencia a la compresión. Este equilibrio es crucial para asegurar mejoras significativas sin comprometer otras propiedades clave del adobe, como la facilidad de manipulación durante la fabricación.

Con respecto al objetivo específico 3 los resultados del F´m 30% con adición de fibras de bambú es de 15.8676 kg/cm², siendo superior al adobe convencional que se obtuvo un F´m de 11.8836 kg/cm², donde se concluye que existe una relación óptima entre la cantidad de fibras de bambú añadidas y la mejora de la resistencia a la compresión. Este equilibrio es crucial para asegurar mejoras significativas sin comprometer otras propiedades clave del

adobe, como la facilidad de manipulación durante la fabricación, concluyendo así que la presencia de fibras orgánicas de bambú no solo fortaleció el adobe en términos de resistencia a la compresión, sino que también se observó un impacto positivo en la durabilidad y la capacidad del adobe para resistir condiciones ambientales adversas, como cambios de temperatura y humedad.

RECOMENDACIONES

Realizar estudios adicionales para obtener la cantidad adecuada de fibras de bambú para la elaboración del adobe. Explorar diferentes concentraciones para encontrar el equilibrio adecuado entre mejora de resistencia y otras propiedades del adobe.

Investigar cómo las variaciones en la longitud y la forma de las fibras de bambú afectan a su F´m. Evaluar si fibras más largas o diferentes formas pueden ofrecer beneficios adicionales en términos de refuerzo.

Ampliar la investigación para evaluar otras propiedades mecánicos del adobe mejorado con fibras de bambú, como la resistencia a la flexión, la absorción de agua y la resistencia al impacto. Esto proporcionará una comprensión más completa de las mejoras generales del material.

Realizar pruebas de durabilidad a largo plazo para evaluar cómo se mantiene el F´m del adobe mejorado con fibras de bambú en condiciones ambientales y climáticas variables. Esto ayudará a determinar la estabilidad a lo largo del tiempo y la resistencia a la degradación.

Investigar el impacto del proceso de fabricación en términos de la facilidad de manipulación y la viabilidad económica. Evaluar el costo asociado con la adición de fibras de bambú y cómo esto puede afectar la aplicación práctica y la aceptación en la industria de la construcción.

Realizar comparaciones con otros refuerzos naturales para adobes, como paja u otras fibras vegetales, para determinar si las fibras de bambú ofrecen ventajas específicas en términos de resistencia a la compresión y otras propiedades.

Explorar aplicaciones prácticas del adobe reforzado con fibras de bambú en proyectos de construcción reales. Además, considerar la integración de estas mejoras en las normas y estándares de ejecución de construcciones garantizando la aceptación y aplicación generalizada.

REFERENCIAS BIBLIOGRÁFICAS

- García Mendoza, A. J. (2007). Los agaves de méxico. Universidad Nacional Autónoma de México. doi:https://www.redalyc.org/pdf/644/64408704.pdf
- Arteaga Vásquez, F. A., & Wong Pérez, L. J. (2020). Propiedades físicas y mecánicas del adobe con adición de fibra debambú en el centro poblado Cambio Puente de la ciudad deChimbote, Santa Ancash-2020[Tesis de pregado, Universidad César Vallejo]. Repositorio Institucional. Obtenido de https://hdl.handle.net/20.500.12692/53794
- Carhuanambo Villanueva, J. T. (2016). Propiedades mecánicas y físicas del adobe compactado con adición de viruta y aserrín, Cajamarca 2016 [Tesis de Pregrado, Universidad Privada del Norte]. Repositorio Institucional. Obtenido de https://hdl.handle.net/11537/7328
- Del Rio Marino, D. A. (2022). Incorporación de fibra de bambú para el mejoramiento de las propiedades mecánicas del adobe, Pelatana, Huancavelica, 2022[Tesis de Pregrado, Universidad César Vallejo].
 Repositorio Institucional. Obtenido de https://hdl.handle.net/20.500.12692/86754
- Diseño y construcción con bambú. (s/f). Miniestrio de viviend, construción y saneamiento. doi:chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/https://www.usmp.edu.pe/ivuc/pdf/Proyecto_Normativo_Bambu.pdf
- Gaona Patiño, J. L., & Soler Camargo, J. A. (2016). Factibilidad técnica del uso de la fibra del fique como elemento de confinamiento de muros de adobe ante solicitación de fuerzas cortantes por sismos[Tesis de Pregrado,Universidad la Gran Colombia]. Repositorio Institucional.

 Obtenido de https://repository.ugc.edu.co/bitstream/handle/11396/3995/Factibilidad _tecnica.pdf?sequence=1
- García Gómez, I. (2017). Estudio de permeabilidad en el adobe implementando agregados naturales[Tesis de Pregrado,]. Repositorio Institucional. Obtenido de http://jupiter.utm.mx/~tesis_dig/13322.pdf

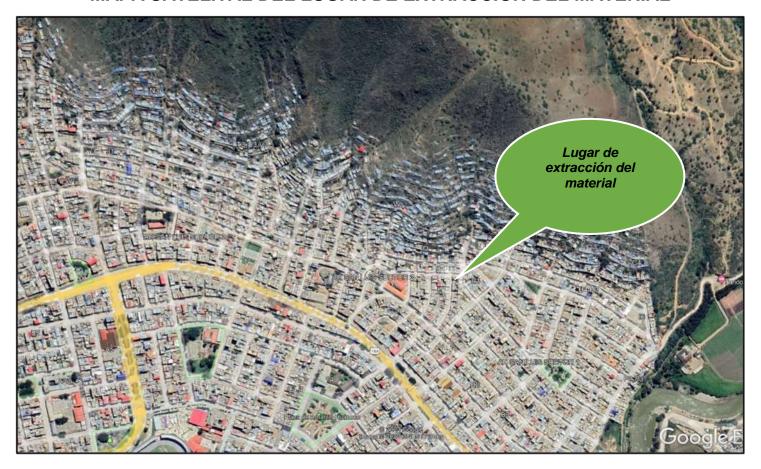
- Gernot, M. (2005). *Manual de Construccion Para VIviendas Antiismicas De Tierra*. Alemania: Universidad DE Kassel.
- Hernández Sampieri, R., Fernández Collado, C., & Baptista Lucio, M. (2010). *Metodología de la Investigación.* Mexico: Mc Graw Hill Education.
- Hoz Onrubia, J., Maldonado Ramos, L., & Vela Cossió, F. (2003). *Diccionario de construcción tradicional: tierra*. San Bartolome: Nera.
- Igarashi Hasegawa, L. I. (2009). Reforzamiento estructural de muros de adobe. Lima: U.N.I.
- Mamani Mamani, E., & Pinazo Apaza, L. R. (2019). Eficiencia de una vivienda construida con tabiquería bioclimática a base del stipa ichu y festuca dolichophylla presl para mejorar el confort térmico de la zona de chillapalca, san antonio de putina, de la región puno-2018. Repositorio Institucional. Obtenido de https://vriunap.pe/repositor/docs/d00006832-Borr.pdf
- Ministerio de agricultura. (2008). Plan Nacional de Promoción del Bambú.

 Ministerio de agricultura. doi:chromeextension://efaidnbmnnnibpcajpcglclefindmkaj/https://www.serfor.gob.
 pe/portal/wpcontent/uploads/2017/04/Plan%20Nacional%20del%20Bambu.pdf
- Morales Morales, R., Torres Cabrejos, R., Rengifo, L., & Irala Candiotti, C. (1993). *Manual para la la construción de viviendas de adobe.* Lima: CIMID-FIC-UNI.
- Mosqueira Moreno , M. Á. (2019). *Incidencia de la fibra vegetal "paja ichu" en la resistencia mecánica del adobe en el distrito de cajamarca[Tesis de grado de Master,Universidad Nacional de Cajamarca]*. Repositorio Institucional.

 Obtenido de https://repositorio.unc.edu.pe/handle/20.500.14074/3273
- NORMA E.080. (2017). El Peruano. Obtenido de chromeextension://efaidnbmnnnibpcajpcglclefindmkaj/https://cdnweb.construccion.org/normas/rne2012/rne2006/files/titulo3/02_E/E_08 0.pdf
- Omonte Trujillo, L. A., & Chacon Justo, M. M. (2019). Uso de diferentes dosis de residuos agroindustriales (bagazo de caña y viruta) como aditivos

- en la fabricación de adobes ecoeficientes [Tesis de Pregrado, Universidad Nacional Hermilio Valdizán Huánuco]. Repositorio Institucional. Obtenido de https://hdl.handle.net/20.500.13080/6149
- Ordóñez Candelaria, V. R., Mejía Saulés, T., & Bárcenas Pazos, G. M. (s/f).

 Manual para la construcción sustentable con bambú. Instituto de Ecología A.C. doi:chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/https://www.conafor.gob.mx/biblioteca/documentos/MANUAL_PARA_LA_CONSTRUCCION_SUSTENTABLE_CON_BAMBU.PDF
- Real Academia Española. (2005). Obtenido de Asrrín: https://www.rae.es/dpd/aserr%C3%ADn
- Rodriguez Puerta, A. (4 de Setiembre de 2018). *lifeder.com*. Obtenido de https://www.lifeder.com/viabilidad-investigacion/
- Ruiz Serrano, M. (2019). Conformación de bloques de adobe con residuos de agave "Angustifolia Haw" Estrategia para el desarrollo local sustentable en Santa María La Asunción, Zumpahuacán, Estado de México. [Tesis grado de maestro, Universidad Autónoma del estado de México].


 Repositiorio Institucional. Obtenido de http://ri.uaemex.mx/bitstream/handle/20.500.11799/105029/TESIS%2 0MAURICIO%202019.pdf?sequence=1

COMO CITAR ESTE TRABAJO DE INVESTIGACIÓN

Doroteo Morales, Y. (2025). *Mejora de la resistencia a la compresión del adobe hecho con fibras orgánicas de bambú en el distrito de amarilis – Huánuco – 2023.* [Tesis de Pregrado, Universidad de Huánuco]. Repositorio Institucional UDH. https://...

ANEXOS

ANEXO 1
MAPA SATELITAL DEL LUGAR DE EXTRACCIÓN DEL MATERIAL

ANEXO 2

MATRIZ DE CONSISTENCIA

TÍTULO: "MEJORA DE LA RESISTENCIA A LA COMPRESIÓN DE UN ADOBE HECHO CON FIBRAS DE LA MADERA BAMBÚ EN EL DISTRITO DE AMARILIS – HUÁNUCO – 2023"

FORMULACION DEL PROBLEMA	OBJETIVOS	HIPÓTESIS	METODOLOGÍA
PROBLEMA GENERAL: ¿En qué medida mejora la resistencia a la compresión del adobe al añadirle fibras orgánicas de bambú en el distrito de Amarilis –	OBJETIVO GENERAL: Determinar la mejora de la resistencia a la compresión de un adobe al añadirle fibras orgánicas de bambú en el distrito de Amarilis —	HIPÓTESIS GENERAL: Mejorará significativamente la resistencia a la compresión del adobe al añadirle fibras orgánicas de bambú en el distrito de Amarilis – Huánuco –	Cuantitativo ALCANCE:
Huánuco – 2023?	Huánuco – 2023.	2023.	Explicativo
PROBLEMAS ESPECÍFICOS: I. ¿En qué medida mejora la resistencia a la compresión del	OBJETIVOS ESPECIFICOS: I. Determinar la mejora de la resistencia a la compresión del	HIPÓTESIS ESPECIFICAS: I. Mejorará significativamente la medida a la resistencia a la compresión	DISEÑO: Cuasi experimental
adobe al añadirle 15% de fibras orgánicas de bambú en el distrito de Amarilis – Huánuco – 2023?	adobe al añadirle 15% de fibras orgánicas de bambú en el distrito de Amarilis – Huánuco – 2023.	del adobe al añadirle 15% de fibras orgánicas de bambú en el distrito de Amarilis – Huánuco – 2023.	POBLACION: Está representada por 40 adobes que se le añadirá fibras orgánicas de bambú.
II. ¿En qué medida mejora la resistencia a la compresión del adobe al añadirle 20% de fibras orgánicas de bambú en el distrito de Amarilis – Huánuco – 2023?	II. Determinar la mejora de la resistencia a la compresión del adobe al añadirle 20% de fibras orgánicas de bambú en el distrito de Amarilis – Huánuco – 2023.	II. Mejorará significativamente la medida a la resistencia a la compresión del adobe al añadirle 20% de fibras orgánicas de bambú en el distrito de Amarilis – Huánuco – 2023.	MUESTRA: Se tomará 10 especímenes de adobes donde se le añadirá fibras orgánicas de bambú.
III. ¿En qué medida mejora la resistencia a la compresión del adobe al añadirle 30% de fibras orgánicas de bambú en el distrito de Amarilis – Huánuco – 2023?	III. Determinar la mejora de la resistencia a la compresión del adobe al añadirle 30% de fibras orgánicas de bambú en el distrito de Amarilis – Huánuco – 2023.	III. Mejorará significativamente la medida a la resistencia a la compresión del adobe al añadirle 30% de fibras orgánicas de bambú en el distrito de Amarilis – Huánuco – 2023.	Variables: V.D.= Resistencia a la compresión del adobe. V.I.= Fibras orgánicas de bambú

ANEXO 3 RESULTADOS DE LABORATORIO

LABORATORIO DE SUELOS, CONCRETO Y PAVIMENTOS

ENSAYO	RESISTENCIA A LA COMPRESION EN UNIDADES DE ADOBE
NORMA	1 NORMA E.080 DISEÑO Y CONSTRUCCIÓN CON TIERRA REFORZADA
PROYECTO	"MEJORA DE LA RESISTENCIA A LA COMPRESIÓN DEL ADOBE HECHO CON FIBRAS ORGÁNICAS DE BAMBÚ EN EL DISTRITO DE AMARILIS – HUÁNUCO – 2022"
SOLICITA	DOROTEO MORALES, YELTSIN
FECHA	AGOSTO DEL 2023
EQUIPO	PRENSA DIGITAL STYE 2000

CONTENIDO DE HUMEDAD

MTC E 108 / ASTM D2216 / NTP 339.127

DATOS DE LA MUESTRA						
Descripción	ID	Ensayo N°				
Descripcion		1	2	3		
Peso Tara (g)	Α	103.00	103.00	103.00		
Peso Tara más muestra Húmeda (g)	В	600.00	600.00	600.00		
Peso Tara más muestra Seca (g)	С	568.00	573.00	571.00		
Peso muestra Húmeda - Ph (g), D = B - A	D	497.00	497.00	497.00		
Peso muestra Seca - Ps (g), E = C - A	E	465.00	470.00	468.00		
Peso del Agua (g), F = B - C	F	32.00	27.00	29.00		
Contenido de Humedad (W%) = $\frac{Ph - Ps}{Pg} \cdot 100$	G	6.88%	5.74%	6.20%		
CONTENIDO DE HUMEDAD PROMEDIO (W%)			6.27%			

JR. Independencia N° 1900

970 181 387

ENSAYO	RESISTENCIA A LA COMPRESION EN UNIDADES DE ADOBE						
NORMA	NORMA E.080 DISEÑO Y CONSTRUCCIÓN CON TIERRA REFORZADA						
PROYECTO	"MEJORA DE LA RESISTENCIA A LA COMPRESIÓN DEL ADOBE FIBRAS ORGÁNICAS DE BAMBÚ EN EL DISTRITO DE AMARILIS 2022"						
SOLICITA	DOROTEO MORALES, YELTSIN						
FECHA	AGOSTO DEL 2023						

ANALISIS GRANULOMETRICO POR TAMIZADO

(MTC E 107/ASTM D 422)

		STRA	E LA MUE	DATOS D			100
uro.	TAMAÑO MÁXI	% QUE	% RETENIDO	% RETENIDO	PESO	DIÁMETRO	TAMIZ
HO	LAMANO MAAL	PASA	ACUMULADO	PARCIAL	RETENIDO	(mm)	No
and the same of	DESCRIPCION DE LAMI					76.200	3"
ESIRA.	DESCRIPCION DE LA SEC					50.800	2"
granula	Suelo limoso con material					38.100	1.1/2"
	equivalente a					25,400	1"
10	18.98%	98.50	1.50	1.50	15.0	19.050	34"
	1000000	98.09	1.91	0.41	4.1	12 700	1/2"
		97.87	2.13	0.22	2.2	9.525	3/8"
1.4	LIMITE LIQUIDO:	95.46	3.54	1.41	14.1	4.750	No 4
1.3	LIMITE PLÁSTICO :	95.18	4.82	1.28	12.8	2.360	No 8
12	INDICE PLASTICO #	95.03	4.97	0.15	1.5	2.000	No 10
N.P	COEFICENTE DE CURVATURA =	93.78	6.22	1.25	12.5	1.180	No 16
N.P	COEFICENTE DE UNIFORMIDAD :	91.92	8.08	1.86	18.6	0.590	No 30
1	CLASIFICACION	90.77	9.23	1.15	11.5	0.426	No 40
	SUCS: CL	89.41	10.59	1.36	13.6	0.297	No 50
	AASHTO: A-6	86.10	13.90	3.31	33.1	0.149	No 100
II.	OBSERVACIONES	81.02	18.98	5.07	50.7	0.074	No 200
6.27%	Humedad Natural =	0.00	100.00	81.02	810.0	0.000	AZOLETA
81.625	Pasa Tamp N° 200 =			100.00	999.7		TOTAL

- III JR. Independencia Nº 1900
- 970 181 387

ENSAYO	RESISTENCIA A LA COMPRESION EN UNIDADES DE ADOBE
NORMA	NORMA E 080 DISEÑO Y CONSTRUCCIÓN CON TIERRA REFORZADA
PROYECTO	"MEJORA DE LA RESISTENCIA A LA COMPRESIÓN DEL ADOBE I HECHO CON FIBRAS ORGÁNICAS DE BAMBÚ EN EL DISTRITO DE AMARILIS - HUÁNUCO - 2022"
SOLICITA	DOROTEO MORALES, YELTSIN
FECHA	AGOSTO DEL 2023

LIMITES DE ATTERBERG ASTM D 4318 - NTP 339.129.

LIMITES LIQUIDO ASTM D - 423 - NTP 339.129.										
N° DE GOLPES	21	23	26	33						
Suelo Humedo + Tarro	39.070	39.260	36.180	35.240						
Buelo seco + Tamo	32.260	32.110	30,070	29.510						
Peso de Tarro	16.970	15.830	15.860	15,850						
Peso del Agua	6.810	7.150	6.110	5.730						
Paso de Suelo Seco	15.290	16.280	14.210	13,660						
HUMEDAD %	44.54%	43.92%	43.00%	41.95%						

LIMITES PLASTICO ASTM D - 424 - NTP 339.129.

MUESTRA	01	62	03
Suelo Humedo + Tarro	18.630	18.370	16.790
Sueto seco + Terro	18.010	17.870	16.610
Paso de Tarro	15.820	15.820	15.820
Peso del Agua	0.620	0.500	0.180
Peso de Suelo Seco	2.190	2.050	0.790
HUMEDAD %	28.31%	24.39%	22.78%

LIMITELIQUIDO		0.43
LIMITE PLASTICO	1	0.25
LIMITE PLASTICO		0.18

JR. Independencia N° 1900

970 181 387

ENSAYO		RESISTENCIA A LA COMPRESION EN UNIDADES DE ADOBE
NORMA		NORMA E.080 DISEÑO Y CONSTRUCCIÓN CON TIERRA REFORZADA
PROYECTO		"MEJORA DE LA RESISTENCIA A LA COMPRESIÓN DEL ADOBE HECHO CON FIBRAS ORGÁNICAS DE BAMBÚ EN EL DISTRITO DE AMARILIS - HUÀNUCO - 2022"
SOLICITA		DOROTEO MORALES, YELTSIN
FECHA	4	OCTUBRE DEL 2023
EQUIPO	1	PRENSA DIGITAL STYE 2000

IDENTIFICACION	FECHA DE VACLADO	FECHADE REMOJADO	ED.4D (horas)	ALTURA PROMEDIO (mm)	ANCHO PROMEDIO (mm)	PROMEDIO (mm)	PESO DE LA UNIDAD SECA (gr)	PESO DE LA UNIDAD SATURADA	PORCENTAJE DE ABSORCION %	PROMEDIO %
P-01	03/08/2023	04/08/2023	24	100	00.3	101	1648	1742	5.70	
P=02	03/08/2023	04/08/2023	24	99.5	100	102	1636	1721	5.20	1533.55340
P-03	03/08/2023	04/08/2023	24	100	100.5	103	1635	1714	4.83	5.37
P-04	03/08/2023	04/08/2023	24	99.1	101	101	1623	1741	7.27	2022/2020
P-05	03/08/2023	04/08/2023	24	101	100	102.5	1658	1722	3.86	d)
M-1 (15%)	03/08/2023	04/08/2023	24	101	101	102.5	1658	1731	4.40	
M-2 (15%)	03/08/2023	04/08/2023	24	101.5	101.5	103	1626	1742	7.13	
M-3 (15%)	03/08/2023	04/08/2023	24	100	100.5	101	1605	1738	8.29	6.20
M-4 (15%)	03/08/2023	04/08/2023	24	100	100.5	102.5	1635	1729	5.75	
M-5 (15%)	03/08/2023	04/08/2023	24	100	101.6	101.3	1651	1741	5.45	9
M-1 (20%)	03/08/2023	04/08/2023	24	102	101	103	1648	1790	8.62	
M-2 (20%)	03/08/2023	04/08/2023	24	100	101.5	102.5	1631	1781	9.20	
M-3 (20%)	03/08/2023	04/08/2023	24	101.5	101.7	103	1612	1771	9.86	8.12
M-4 (20%)	03/08/2023	04/08/2023	24	100	101	101	1661	1788	7.65	
M-5 (20%)	03/08/2023	04/08/2023	24	100.5	99.5	100	1683	1772	5,29	
M-1 (30%)	03/08/2023	04/08/2023	24	101	101	102.5	1624	1821	12.13	
M-2 (30%)	03/08/2023	04/08/2023	24	101.5	101.5	103	1645	1833	11.43	NUMBER OF STREET
M-3 (30%)	03/08/2023	04/08/2023	24	100	100.5	103	1661	1842	10.90	11.26
M-4 (30%)	03/08/2023	04/08/2023	24	99.1	101	101	1664	1832	10.10	All Control of the Co
M-5 (30%)	03/08/2023	04/08/2023	24	100	101.6	103	1618	1808	11.74	1

 $36ABS = \frac{P2-P1}{P1} + 100$

%ABS = Porcentaje de absorción de agua (%) P1 = Peso de la unidad seca (gr) P2 = Peso de la unidad saturada (gr)

III JR. Independencia N° 1900

970 181 387

Noe Respaldiza Munguia INGENIERO CIVIL Reg. GIP N° 218972

OBREGON ESPINOZA GINO TEC. LABORATORISTA DE SUELOS, CONCRETO Y PAVIMENTOS

ENSAYO	÷	RESISTENCIA A LA COMPRESION EN UNIDADES DE ADOBE
NORMA	±	NORMA E.080 DISEÑO Y CONSTRUCCIÓN CON TIERRA REFORZADA
PROYECTO	1	"MEJORA DE LA RESISTENCIA A LA COMPRESIÓN DEL ADOBE HECHO CON FIBRAS ORGÁNICAS DE BAMBÚ EN EL DISTRITO DE AMARILIS — HUÁNUCO — 2022"
SOLICITA	#	DOROTEO MORALES, YELTSIN
FECHA	1	AGOSTO DEL 2023
EQUIPO	-	PRENSA DIGITAL STYE 2000

		% DEFINAS	FECHA DE	FECHA DE	EDAD DE	CARGA	CARGA .					
MUES	STRA	ORGÁNICAS DE BAMBIO	ELABORACION	ENSAYO	ADOBE	MAXIMA (KN)	MAXIMA (Kg)	Ancha (cm)	Largo (cm)	Alta (cm)	Area (cm2)	f'c
M-1	(PATRON)	0%	03/08/2023	31/08/2023	28 dias	11.78 km	1,201.21 kg	10.000	10.000	10,000	100,000	12.01 kg/cm²
M-2	(PATRON)	0%	03/08/2023	31/08/2023	28 dias	11.98 kn	1,221 60 kg	10.000	10.000	10.000	100.000	12.22 kg/cm²
M-3	(PATRON)	0%	03/08/2023	31/08/2023	28 dias	11.53 km	1,175.71 kg	10.000	10.000	10.000	100.000	11.76 kg/cm²
M-4	(PATRON)	0%	03/08/2023	31/08/2023	28 dias	11.57 kn	1,179.79 kg	10.000	10.000	10.000	100.000	11.80 kg/cm²
M-5	(PATRON)	0%	03/08/2023	31/08/2023	28 dias	11.65 km	1,187.95 kg	10.000	10.000	10.000	100.000	11.88 kg/cm²
M-6	(PATRON)	0%	03/08/2023	31/08/2023	28 dias	11.96 km	1,219.56 kg	10.000	10,000	10.000	100.000	12.20 kg/cm²
M-7	(PATRON)	0%	03/08/2023	31/08/2023	28 dias	11.34 km	1,156.34 kg	10.000	10.000	10.000	100.000	11.56 kg/cm²
M-8	(PATRON)	0%	03/08/2023	31/08/2023	28 dias	11,28 km	1,150.22 kg	10.000	10.000	10.000	100.000	11.50 kg/cm²
M-9	(PATRON)	0%	03/08/2023	31/08/2023	28 dias	11.90 km	1,213.44 kg	10.000	10.000	10.000	100.000	12.13 kg/cm²
M-10	(PATRON)	0%	03/08/2023	31/08/2023	28 dias	11.55 km	1,177.75 kg	10.000	10.000	10.000	100.000	11.78 kg/cm²


 $f'c=\frac{P}{A}$

Donde:

la Compresión del Mortero

Carga Máxima

la Superficie de Carga

f'c PROMEDIO 11.88 kg/cm²

III JR. Independencia Nº 1900

970 181 387

OBREGÓN ESPINOZA GINO TEL LABORATORISTA DE SURLOS, CONCRETO Y PANAMENTOS

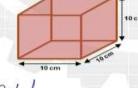
ENSAYO	RESISTENCIA A LA COMPRESION EN UNIDADES DE ADOBE
NORMA	NORMA E.080 DISEÑO Y CONSTRUCCIÓN CON TIERRA REFORZADA
PROYECTO	"MEJORA DE LA RESISTENCIA A LA COMPRESIÓN DEL ADOBE HECHO CON FIBRAS ORGÁNICAS DE BAMBÚ EN EL DISTRITO DE AMARILIS — HUÁNUCO — 2022"
SOLICITA	: DOROTEO MORALES, YELTSIN
FECHA	AGOSTO DEL 2023
EQUIPO	PRENSA DIGITAL STYE 2000

	% DE FIBRAS	FECHA DE	FECHA DE	EDAD DE	CARGA	CARGA		ESPECÍMENES			
MUESTR4	ORGÁNICAS DE BAMBÚ	ELABORACIÓ N	ENSAYO	ADOBE	MÁXIMA (KN)	MÁXIMA (Kg)	Ancho (cm)	Largo (cm)	Alto (cm)	Area (cm2)	f"e
M-1	15%	03/08/2023	31/08/2023	28 dias	13.44 kn	1,370.48 kg	10.000	10.000	10.000	100.000	13.70 kg/cm²
M-2	15%	03/08/2023	31/08/2023	28 dias	13.20 kn	1,346.00 kg	10.000	10.000	10.000	100.000	13.46 kg/cm²
M-3	15%	03/08/2023	31/08/2023	28 dias	13.56 kn	1,382,71 kg	10.000	10.000	10.000	100.000	13.83 kg/cm²
M-4	15%	03/08/2023	31/08/2023	28 dias	13.65 kn	1,391.89 kg	10.000	10.000	10.000	100.000	13.92 kg/cm²
M-5	15%	03/08/2023	31/08/2023	28 dias	13.24 kn	1,350.08 kg	10.000	10.000	10.000	100.000	13.50 kg/cm²
M-6	15%	03/08/2023	31/08/2023	28 dias	13.62 kn	1,388.83 kg	10.000	10.000	10.000	100.000	13.89 kg/cm²
M-7	15%	03/08/2023	31/08/2023	28 dias	13.35 kn	1,361.30 kg	10.000	10.000	10.000	100.000	13.61 kg/cm²
M-8	15%	03/08/2023	31/08/2023	28 dias	13,48 kn	1,374.56 kg	10.000	10.000	10.000	100.000	13.75 kg/cm²
M-9	15%	03/08/2023	31/08/2023	28 dias	13.66 kn	1,392.91 kg	10.000	10.000	10.000	100.000	13.93 kg/cm²
M-10	15%	03/08/2023	31/08/2023	28 dias	13.61 kn	1,387.81 kg	10.000	10.000	10.000	100.000	13.88 kg/cm²

f'c PROMEDIO 13.75 kg/cm²

 $f'c = \frac{P}{A}$

Donde:


F'c : Resistencia a la Compresión del Mortero

P : Carga Máxima

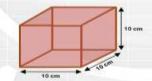
A : Área de la Superficie de Carga

970 181 387

OBREGON ESPINOZA GINO
LABORATORISTA DE SUELOS, CONCRETO
Y PAVIMENTOS

ENSAYO	#	RESISTENCIA A LA COMPRESION EN UNIDADES DE ADOBE
NORMA	:	NORMA E.080 DISEÑO Y CONSTRUCCIÓN CON TIERRA REFORZADA
PROYECTO	#	"MEJORA DE LA RESISTENCIA A LA COMPRESIÓN DEL ADOBE HECHO CON FIBRAS ORGÁNICAS DE BAMBÚ EN EL DISTRITO DE AMARILIS — HUÁNUCO — 2022"
SOLICITA	- 4	DOROTEO MORALES, YELTSIN
FECHA		AGOSTO DEL 2023
EQUIPO	1	PRENSA DIGITAL STYE 2000

	% DE FIBRAS	FECHA DE	FECHA DE	EDAD DE	CARGA CARGA MÁXIMA MÁXIMA (KN) (Kg)	CARGA	ESPECÍMENES				
	ORGÁNICAS DE BAMBO	ELABORACIÓ N	ENSAYO				Ancho (cm)	Largo (cm)	Alto (cm)	Area (cm2)	f'c
M-1	20%	03/08/2023	31/08/2023	28 dias	14.98 kn	1,527.51 kg	10.000	10.000	10.000	100.000	15.28 kg/cm
M-2	20%	03/08/2023	31/08/2023	28 dias	14.36 kn	1,464.29 kg	10.000	10.000	10.000	100.000	14.64 kg/cm
M=3	20%	03/08/2023	31/08/2023	28 dias	14.74 kn	1,503.04 kg	10.000	10.000	10.000	100.000	15.03 kg/cm
M-4	20%	03/08/2023	31/08/2023	28 dias	14.33 kn	1,461.23 kg	10.000	10.000	10.000	100.000	14.61 kg/cm
M-5	20%	03/08/2023	31/08/2023	28 dias	14.65 kn	1,493.86 kg	10.000	10.000	10.000	100.000	14.94 kg/cm
M-6	20%	03/08/2023	31/08/2023	28 dias	14.55 kn	1,483.66 kg	10.000	10.000	10.000	100.000	14.84 kg/cm
M-7	20%	03/08/2023	31/08/2023	28 dias	14.80 kn	1,509.16 kg	10.000	10.000	10.000	100.000	15.09 kg/cm
M-8	20%	03/08/2023	31/08/2023	28 dias	14.78 kn	1,507.12 kg	10.000	10.000	10.000	100,000	15.07 kg/cm
M-9	20%	03/08/2023	31/08/2023	28 dias	14.62 kn	1,490.80 kg	10.000	10.000	10.000	100.000	14.91 kg/cm
M-10	20%	03/08/2023	31/08/2023	28 dias	14.69 kn	1,497.94 kg	10.000	10.000	10.000	100,000	14,98 kg/cm


 $f'c = \frac{P}{A}$

Donde:

F'c : Resistencia a la Compresión del Mortero

P : Carga Máxima

A : Área de la Superficie de Carga

f'c PROMEDIO 14.94 kg/cm

III JR. Independencia N° 1900

970 181 387

OBREGÓN ESPINOZA GINO
TEC. LABORATORISTA DE SULLOS, CONCRETO
Y PAVIMENTOS

ENSAYO	4	RESISTENCIA A LA COMPRESION EN UNIDADES DE ADOBE			
NORMA	1	NORMA E.080 DISEÑO Y CONSTRUCCIÓN CON TIERRA REFORZADA			
PROYECTO		"MEJORA DE LA RESISTENCIA A LA COMPRESIÓN DEL ADOBE HECHO CON FIBRAS ORGÁNICAS DE BAMBÚ EN EL DISTRITO DE AMARI HUÁNUCO - 2022"			
SOLICITA	31	DOROTEO MORALES, YELTSIN			
FECHA	9	AGOSTO DEL 2023			
EQUIPO	- 1	PRENSA DIGITAL STYE 2000			

	% DE FIBRAS	FECHA DE	FECHA DE	EDAD DE	CARGA MÁXIMA (KN)	CARGA MÁXIMA (Kg)	ESPECÍMENES				
MUESTRA ORGÁNICAS D BAMBÚ	ORGÁNICAS DE BAMBÚ	CAS DE FLABORACIÓN EN	ENSAYO	ADOBE			Ancho (cm)	Largo (em)	Alto (cm)	Area (cm2)	f'e
M-1	30%	03/08/2023	31/08/2023	28 dias	15.60 kn	1,590.73 kg	10.000	10.000	10.000	100.000	15.91 kg/cm²
M-2	30%	03/08/2023	31/08/2023	28 dias	15.34 kn	1,564.22 kg	10.000	10.000	10.000	100.000	15.64 kg/cm²
M-3	30%	03/08/2023	31/08/2023	28 dias	15.70 km	1,600.93 kg	10.000	10.000	10.000	100.000	16.01 kg/cm²
M-4	30%	03/08/2023	31/08/2023	28 dias	15.46 kn	1,576.46 kg	10.000	10.000	10.000	100.000	15.76 kg/cm
M-5	30%	03/08/2023	31/08/2023	28 dias	15.74 kn	1,605.01 kg	10.000	10.000	10.000	100.000	16.05 kg/cm
M-6	30%	03/08/2023	31/08/2023	28 dias	15.34 kn	1,564.22 kg	10.000	10.000	10.000	100.000	15.64 kg/cm²
M-7	30%	03/08/2023	31/08/2023	28 dias	15.87 kn	1,618.26 kg	10.000	10.000	10.000	100,000	16.18 kg/cm
M-8	30%	03/08/2023	31/08/2023	28 dias	15.33 kn	1,563.20 kg	10.000	10.000	10.000	100.000	15.63 kg/cm
M-9	30%	03/08/2023	31/08/2023	28 dias	15.36 kn	1,566.26 kg	10.000	10.000	10.000	100,000	15.66 kg/cm ²
M-10	30%	03/08/2023	31/08/2023	28 dias	15.87 kn	1,618.26 kg	10.000	10.000	10.000	100.000	16.18 kg/cm²

f'с экомерю 15.87 kg/cm²

 $f'_C = \frac{P}{A}$

Donde:

Fc : Resistencia a la Compresión del Mortero

P : Carga Máxima

A : Área de la Superficie de Carga

III JR. Independencia N° 1900

970 181 387

OBREGÓN ESPINOZA GINO TEC. LABORATORISTA DE SUELOS, CONCRETO Y PAVIMENTOS

ANEXO 4 CERTIFICADO DE CALIDAD DEL EQUIPO

CERTIFICADO DE CALIDAD

El equipo identificado en el presente documento ha sido inspeccionado, y revisado de acuerdo con procedimientos estándar, se establece y se encuentra que está dentro de las tolerancias prescritas.

NOMBRE DEL PRODUCTO: PRENSA DE CONCRETO.

DESCRIPCIÓN DEL PRODUCTO: La máquina de prueba de compresión hidráulica se utiliza para la prueba de compresión de hormigón y otros materiales de construcción, carga manual, visualización digital del valor de la presión y la relación de carga.

CARACTERÍSTICAS:

Carga manual, Cubierta protectora

Capacidad de carga máxima: 2000 kN

Espacio de compresión: 360 mm Carrera del pistón: 120 mm

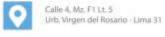
Tamaño de las placas de compresión superiores: 300 mm Tamaño de las placas de compresión inferiores: 300 mm

Dimensión (marco de carga: 900×400×1250 mm

Energia: 220V, 50Hz /60Hz, 1.3kW

MODELO: STYE-2000

SERIE: 221165


FECHA: 22/03/2023

Aprobado: Amed Castillo Control de Calidad

Telf: +51 522 0723 Cel: 945 183 033 945 181 317 / 970 055 989

ANEXO 5 INSTRUMENTOS VALIDADOS DE LA INVESTIGACIÓN

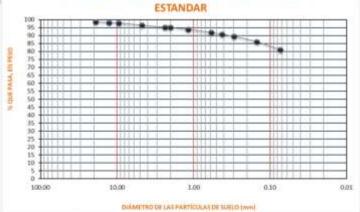
LABORATORIO DE SUELOS, CONCRETO Y PAVIMENTOS

ENSAYO	: RESISTENCIA A LA COMPRESION EN UNIDADES DE ADOBE
NORMA	NORMA E.080 DISEÑO Y CONSTRUCCIÓN CON TIERRA REFORZADA
PROYECTO	"MEJORA DE LA RESISTENCIA A LA COMPRESIÓN DEL ADOBE HECHO CON FIBRAS ORGÁNICAS DE BAMBÚ EN EL DISTRITO DE AMARILIS – HUÁNUCO – 2022"
SOLICITA	: DOROTEO MORALES, YELTSIN
FECHA	: AGOSTO DEL 2023
EQUIPO	: PRENSA DIGITAL STYE 2000

CONTENIDO DE HUMEDAD

MTC E 108 / ASTM D2216 / NTP 339.127

DATOS DE LA MUESTRA						
Descripción	ID		Ensayo N°			
Descripcion	100	1	2	3		
Peso Tara (g)	Α		9			
Peso Tara más muestra Húmeda (g)	В	10		110		
Peso Tara más muestra Seca (g)	С		11			
Peso muestra Húmeda - Ph (g), D = B - A	D					
Peso muestra Seca - Ps (g), E = C - A	E		(Hit		
Peso del Agua (g), F = B - C	F			10,565		
Contenido de Humedad (W%) = $\frac{Ph - Ps}{Ps}$, 100	G	STUDIO		=tii,		
CONTENIDO DE HUMEDAD PROMEDIO (W%)	8 J. N.	CIM V		7- 60		


ENSAYO	RESISTENCIA A LA COMPRESION EN UNIDADES DE ADOBE				
NORMA	NORMA E.080 DISEÑO Y CONSTRUCCIÓN CON TIERRA REFORZADA				
PROYECTO	"MEJORA DE LA RESISTENCIA A LA COMPRESIÓN DEL FIBRAS ORGÁNICAS DE BAMBÚ EN EL DISTRITO DE AN 2022"				
SOLICITA	DOROTEO MORALES, YELTSIN				
FECHA	AGOSTO DEL 2023				
COMPANY OF THE PARK OF THE PAR					

ANALISIS GRANULOMETRICO POR TAMIZADO

(MTC E 107/ASTM D 422)

-	****		DATOS D	E LA MUE	SIKA		
TAMIZ	DIÁMETRO	PESO	% RETENIDO	% RETENIDO	% QUE	TAMAÑOMÁ	VIVIO
No	(mm)	RETENIDO	PARCIAL	ACUMULADO	PASA	TAMAÑO MÁXIMO	
3"	76.200					DESCRIPCIÓN DE LA	ARTEGERIA
2"	50.800	-				DESCRIPCION DE LA	AMUESTRA
1 1/2"	38.100					Suelo limoso con mat	erial granula
1"	25.400					equivalente	a:
3/4"	19.050	-				100.00%	
1/2"	12 700		100				
3/8"	9.525		19				
No 4	4.760		1.7			LIMITE LIQUIDO >	0.4
No B	2.360					LIMITE PLASTICO =	0.3
No 10	2.000				The case	INDICE PLASTICO =	0.2
No 16	1.180	THE ROLL OF THE	30 - 11 0	17 12 19 18	V/KATER	COEFICIENTE DE CURVATURA	N.F
No 30	0.590					COEFICIENTE DE UNIFORMIDAD	= N.P
No 40	0.426	P-77.3=()	11.V 61	CERTAIN STATE	1-1/12	CLASIFICACION	
No 50	0.297					SUCS:	0.00
No 100	0.149	Budnesia				AASHTO:	
No 200	0.074					OBSERVACIONES	
CAZOLETA	0.000					Humedad Natural =	0.00%
TOTAL	W 10					Pasa Tamiz Nº 200 =	0.00%

GRAFICO DE LA GRANULOMETRIA CON MALLAS

ENSAYO	RESISTENCIA A LA COMPRESION EN UNIDADES DE ADOBE
NORMA	NORMA E.080 DISEÑO Y CONSTRUCCIÓN CON TIERRA REFORZADA
PROYECTO	"MEJORA DE LA RESISTENCIA A LA COMPRESIÓN DEL ADOBE HECHO CON FIBRAS ORGÁNICAS DE BAMBÚ EN EL DISTRITO DE AMARILIS - HUÁNUCO - 2022"
SOLICITA	DOROTEO MORALES, YELTSIN
FECHA	: AGOSTO DEL 2023

LIMITES DE ATTERBERG ASTM D 4318 - NTP 339.129.

	LIMITES LIQUIDO ASTM D - 423 - NTP 339.129.							
	N* DE GOLPES							
- 11	Suelo Humedo + Tarro Suelo seco + Tarro							
-	Peso de Tarro							
	Peso del Agua							
	Peso de Suelo Seco.	3 8	- 5					
	HUMEDAD %	- 1						

LIMITES PLASTICO ASTM D - 424 - NTP 339.129.

MUESTRA	01	02	03
Suelo Humedo + Tamo			
Suelo seco + Tarro			
Peso de Tarro			2552 1 107
Peso del Agua	一手 円 九千	产头产生	
Peso de Suelo Seco			
HUMEDAD %	F1575D316)	12 (4 (0.4)2)	C1111111111111111111111111111111111111

LIMITE LIQUIDO :

LIMITE PLASTICO

LIMITE PLASTICO

OBREGÓN ESPINÓZA GINO TEC. LAKORADORISTA DE NUCLOS, CONCRETO Y PANAMENTOS

ENSAYO	0.80	RESISTENCIA A LA COMPRESION EN UNIDADES DE ADOBE
NORMA	1	NORMA E.080 DISEÑO Y CONSTRUCCIÓN CON TIERRA REFORZADA
PROYECTO	1	"MEJORA DE LA RESISTENCIA A LA COMPRESIÓN DEL ADOBE HECHO CON FIBRAS ORGÁNICAS DE BAMBÚ EN EL DISTRITO DE AMARILIS - HUÁNUCO - 2022"
SOLICITA	(4)	DOROTEO MORALES, YELTSIN
FECHA	78	AGOSTO DEL 2023
EQUIPO	111	PRENSA DIGITAL STYE 2000

BLOQUES CÚBICOS PATRÓN DE ARISTA 10 CM										
IDENTIFICACION	FECHA DE EACLADO	FECHA DE REMOJADO	ED4D (horas)	ALTURA PROMEDIO (mm)	PROMEDIO (MOR)	LARGO PROMEDIO (mm)	PESO DE LA UNIDAD SECA (gr)	PESO DE LA UNIDAD SATURADA (ge)	PORCENTAJE DE ARSORCION	PROMEDIO %
P-01										
P-02						1 3	2		0	15
P-03							3			
P-04							6)			
P-05	1					1	100		19	
M-1 (15%)	1			T			1			
M-2 (15%)							5			II.
M-3 (15%)							8			
M-4 (15%)										
M-5 (15%)	4.			1			8		53	
M-1 (20%)				T			I			
M-2 (20%)										
M-3 (20%)										
M-4 (20%)										
M-5 (20%)	1						10	1	(2)	
M-1 (30%)				T			g.		1	
M-2 (30%)							8		1 3	
M-3 (30%)							8		1	1
M-4 (30%)							8		9	
M-5 (30%)										

Enwestern 2: Abburration des agura Durratio

 $56ABS = \frac{P3 - P3}{P1} * 100$

%ABS = Porcentaje de absorción de agua (%) P1 = Peso de la unidad seca (gr)

P2 = Peso de la uradad saturada (gr)

Noe Respoldito Munguio INGENIERO CIVIL Rog. CIP. Nº 218972

OBREGÓN ESPINÓZA GINO TEC LANGRATORISTA DE SUELOS, CONCRETO Y PAYMENTOS

ANEXO 6 PANEL FOTOGRÁFICO

Figura 19
Lugar de extracción de la muestra de suelo.

Nota: se muestra el lugar de escogido para la excavación del material.

Figura 20 *Equipos para excavación*

Nota: se muestra los materiales y equipos como pala, pico, costal para realizar la excavación.

Figura 21

Proceso de excavación

Nota: se muestra el proceso de excavación

Figura 22

Proceso de excavación

Nota: se muestra el proceso de excavación

Figura 23

Proceso de excavación

Nota: se muestra el proceso de excavación

Figura 24

Proceso de excavación

Nota: se muestra el procedimiento de excavación

Figura 25
Extracción de la muestra de suelo.

Nota: se extrae el suelo de la cantera para la realización de los ensayos de suelos respectivos y la elaboración de los adobes con aristas de 10 cm según la NTP E-080.

Figura 26
Pesaje de los tamices

Nota: se pesará cada uno de los tamices para realizar el ensayo granulométrico de suelos, para determinar el tipo de suelo como lo estipula la NTP 339.128.

Figura 27
Pesaje de la muestra de suelo

Nota: La muestra de suelo tiene con máximo nominal de ¾ in. Por lo que se pesará 1 kg de la muestra de suelo como mínimo para usar en el ensayo granulométrico como lo estipula en el ítem 6.1 de la NTP 339.128.

Figura 28

Vibrado manual de los tamices

Nota: se echa el suelo con un peso de 1 Kg para el ensayo granulométrico ordenándose los tamices desde el Tamiz número 3 al 200 y se agitará los tamices en un periodo 10 min como lo estipula la NTP 339.128.

Figura 29
Pesaje de las muestras de suelos retenidas en el tamiz

Nota: se pesa cada tamiz con su respectivo retenido para determinar la curva granulométrica del suelo como lo estipula la NTP 339.128.

Figura 30

Pesaje de la muestra de suelo pasante del tamiz número 40

Nota: se pesa el suelo de 200 g. Para realizar el límite líquido y 20 g. Para el límite plástico como lo estipula la NTP 339.129.

Figura 31
Llenado de muestra de suelo en la Casagrande

Nota: se prepara una pasta maleable con agua destilada y con la muestra pesada del suelo pasante del tamiz número 40, con la pasta se llenará la pasta maleable a la cuchara de Casagrande como lo estipula la NTP 339.129.

Figura 32

Acanalado de muestra de suelo en la Casagrande

Nota: con acanalador de bronce se hace una hendidura en la muestra de suelo en la cuchara de Casagrande como lo estipula la NTP 339.129.

Figura 33
Golpes del suelo con la Casagrande.

Nota: El ensayo de Casagrande se tomará en 3 pruebas distintas con la misma muestra de suelo pasante del tamiz número 40 se darán los golpes 2 veces por segundo para cada prueba de ensayo tendrá que tener un periodo de golpes para cerrar la ranura las muestras de suelo, se agregarán agua destilada para aumentar su humedad y disminuir los números de golpes.

Figura 34

Comprobación del cierre del suelo con el Vernier

Nota: con la ayuda del Vernier digital la muestra de suelo al cerrarse tendrá que tener una medida de 13 mm donde después se retirará una muestra representativa del parte fondo de la copa y se hará el ensayo de contenido de humedad con la ayuda de la NTP 339.127 como lo estipula la NTP 339.129

Figura 35
Ensayo de límite plástico del suelo

Nota: Se enrollará la masa entre la palma o los dedos y la placa de vidrio con la presión necesaria para enrollar la masa en un hilo de diámetro uniforme en toda su longitud, El hilo debe ser deformado en cada movimiento hasta que su diámetro sea de 3,2 mm como lo estipula la NTP 339.129.

Figura 36
Pesaje de las muestras elipsoides del suelo

Nota: se pesará 6 g de las muestras elipsoides del suelo después se llevará al horno de 110 $^{\circ}$ C \pm 5 $^{\circ}$ C por un periodo de 16 horas para determinar su humedad como lo estipula la NTP 339.129

Figura 37
Elaboración de las bolitas de barro

Nota: Se formarán 4 bolitas para determinar la presencia de arcilla, las bolitas se tendrán que dejar secar por 48 horas y se aplastarán para determinar su presencia de arcilla como lo estipula la NTP E-080

Figura 38

Muestras de bambú

Nota: las muestras de bambú se cortarán en medidas de 5 cm por un diámetro de 1/2 cm

Figura 39
Pesaje del bambú en un 15%

Nota: se seleccionará las fibras orgánicas de bambú en un 15 % respecto de la muestra de suelo, para la posterior elaboración del adobe con aristas de 10 cm

Figura 40
Pesaje del bambú en un 20%

Nota: se seleccionará las fibras orgánicas de bambú en un 20 % respecto de la muestra de suelo, para la posterior elaboración del adobe con aristas de 10 cm

Figura 41
Pesaje del bambú en un 30%

Nota: se seleccionará las fibras orgánicas de bambú en un 30 % respecto de la muestra de suelo, para la posterior elaboración del adobe con aristas de 10 cm

Figura 42
Selección de tierra para la elaboración del adobe

Nota: la tierra a usar para la elaboración del adobe tendrá que pasar por el tamiz número como lo estipula la NTP E-080

Figura 43
Elaboración del adobe patrón

Nota: se mezclará la tierra pasante de la malla número 4 con agua hasta llegar una mezcla homogénea para elaborar las muestras de adobe (Patrón) de aristas de 10 cm como lo estipula la NTP E-080

Figura 44
Elaboración de adobe con adiciones de 15%, 20% y 30% de Fibras orgánicas de bambú

Nota: se mezclará la tierra pasante de la malla número 4 con agua hasta llegar una mezcla homogénea para elaborar las muestras con 15%, 20% y 30 % de Fibras orgánicas de bambú de aristas de 10 cm como lo estipula la NTP E-080

Figura 45

Desmoldeo de las muestras de adobe patrón y con adiciones de 15%, 20% y 30% de fibras orgánicas de bambú

Nota: desmoldeo de las muestras de adobe patrón y con 15%, 20% y 30% de Fibras orgánicas de bambú de aristas de 10 cm como lo estipula la NTP E-080

Figura 46

Medidas de los adobes desmoldados

Nota: los adobes desmoldados tendrán una medida de 10 cm por arista, el adobe patrón y con 15%, 20% y 30% de Fibras orgánicas de bambú tendrán que ser secados por 28 días para hacer el ensayo como lo estipula la NTP E-080

Figura 47
Secado de las muestras

Nota: los adobes patrón tendrán que ser secados por un periodo de 28 días para ser ensayadas como lo estipula la NTP E-080

Figura 48
Secado de los adobes con adición de 15% de Fibras orgánicas de bambú

Nota: los adobes con 15% de Fibras orgánicas de bambú tendrán que ser secados por un periodo de 28 días para ser ensayadas como lo estipula la NTP E-080

Figura 49
Secado de los adobes con adición de 20% de Fibras orgánicas de bambú

Nota: los adobes con 20% de Fibras orgánicas de bambú tendrán que ser secados por un periodo de 28 días para ser ensayadas como lo estipula la NTP E-080

Figura 50
Secado de los adobes con adición de 30% de Fibras orgánicas de bambú

Nota: los adobes con 30% de Fibras orgánicas de bambú tendrán que ser secados por un periodo de 28 días para ser ensayadas como lo estipula la NTP E-080

Figura 51
Ensayo de resistencia a la compresión del adobe después de 28 días de secado

Nota: se aplicará una carga constante de una velocidad de 0,9 MPa/min a los cubos de adobe

Figura 52Rotura de los adobes patrón

Nota: se registra la carga máxima que dio la prensa digital STYE 2000.

Figura 53

Ensayo de rotura del adobe con adición del 15% de Fibras orgánicas de bambú después de 28 días de secado

Nota: se aplicará una carga constante de una velocidad de 0,9 MPa/min a los cubos de adobe

Figura 54

Rotura del adobe con 15% de Fibras orgánicas de bambú después de 28 días de secado

Nota: se registra la carga máxima que dio la prensa digital STYE 2000 de los adobes con 15% de Fibras orgánicas de bambú

Figura 55

Ensayo de rotura del adobe con 15% de Fibras orgánicas de bambú después de 28 días de secado

Nota: se aplicará una carga constante de una velocidad de 0,9 MPa/min a los cubos de adobe

Figura 56

Rotura del adobe con adición del 20% de Fibras orgánicas de bambú después de 28 días de secado

Nota: se registra la carga máxima que dio la prensa digital STYE 2000 de los adobes 20% de Fibras orgánicas de bambú

Figura 57

Ensayo de rotura del adobe con 15% de Fibras orgánicas de bambú después de 28 días de secado

Nota: se aplicará una carga constante de una velocidad de 0,9 MPa/min a los cubos de adobe

Figura 58

Rotura del adobe con 20% de Fibras orgánicas de bambú después de 28 días de secado

Nota: se registra la carga máxima que dio la prensa digital STYE 2000 de los adobes con 20% de Fibras orgánicas de bambú

ANEXO 7

DOCUMENTOS BRINDADOS POR LA UNIVERSIDAD

UNIVERSIDAD DE HUÁNUCO

Facultad de Ingeniería

RESOLUCIÓN Nº 1246-2023-D-FI-UDH

Huánuco, 02 de junio de 2023

Visto, el Oficio N° 853-2023-C-PAIC-FI-UDH, mediante el cual el Coordinador Académico de Ingeniería Civil, remite el dictamen de los jurados revisores, del Trabajo de Investigación (Tesis) intitulado: "MEJORA DE LA RESISTENCIA A LA COMPRESIÓN DEL ADOBE HECHO CON FIBRAS ORGÁNICAS DE BAMBÚ EN EL DISTRITO DE AMARILIS – HUÁNUCO – 2023", presentado por el (la) Bach. Yeltsin DOROTEO MORALES.

CONSIDERANDO:

Que, mediante Resolución Nº 006-2001-R-AU-UDH, de fecha 24 de julio de 2001, se crea la Facultad de Ingeniería, y;

Que, mediante Resolución de Consejo Directivo N° 076-2019-SUNEDU/CD, de fecha 05 de junio de 2019, otorga la Licencia a la Universidad de Huánuco para ofrecer el servicio educativo superior universitario, y;

Que, mediante Resolución N° 860-2022-D-FI-UDH, de fecha 28 de abril de 2022, perteneciente al Bach. **Yeltsin DOROTEO MORALES** se le designó como ASESOR(A) de Tesis al Mg. Bladimir Jhon Abal García, docente adscrito al Programa Académico de Ingeniería Civil de la Facultad de Ingeniería, y;

Que, según Oficio Nº 853-2023-C-PAIC-FI-UDH, del Coordinador Académico quien informa que los JURADOS REVISORES del Trabajo de Investigación (Tesis) intitulado: "MEJORA DE LA RESISTENCIA A LA COMPRESIÓN DEL ADOBE HECHO CON FIBRAS ORGÁNICAS DE BAMBÚ EN EL DISTRITO DE AMARILIS – HUÁNUCO – 2023", presentado por el (la) Bach. Yeltsin DOROTEO MORALES, integrado por los siguientes docentes: Mg. Johnny Prudencio Jacha Rojas (Presidente), Mg. Yelen Lisseth Trujillo Ariza (Secretario) y Mg. William Paolo Taboada Trujillo (Vocal), quienes declaran APTO para ser ejecutado el Trabajo de Investigación (Tesis), y;

Estando a las atribuciones conferidas al Decano de la Facultad de Ingeniería y con cargo a dar cuenta en el próximo Consejo de Facultad.

SE RESUELVE:

Artículo Primero. - APROBAR, el Trabajo de Investigación (Tesis) y su ejecución intitulado: "MEJORA DE LA RESISTENCIA A LA COMPRESIÓN DEL ADOBE HECHO CON FIBRAS ORGÁNICAS DE BAMBÚ EN EL DISTRITO DE AMARILIS – HUÁNUCO – 2023", presentado por el (la) Bach. Yeltsin DOROTEO MORALES para optar el Título Profesional de Ingeniero(a) Civil, del Programa Académico de Ingeniería Civil de la Universidad de Huánuco.

Artículo Segundo. - El Trabajo de Investigación (Tesis) deberá ejecutarse hasta un plazo máximo de 1 año de su Aprobación. En caso de incumplimiento podrá solicitar por única vez la ampliación del mísmo (6 meses).

REGISTRESE, COMUNÍQUESE Y ARCHÍVESE

SOCIATE IN SECURE MANUE LOS SECURE MANUE DE MANU

DECANO : LANDE MUANUCE STATE OF THE PROPERTY OF THE PROPERTY AND THE PROPERTY OF THE PROPERTY

Distribución

Fac. de Ingonieria - PAIC - Asesor - Exp. Graduando - Interesado - Archivo. BCR/EIML/nio.