UNIVERSIDAD DE HUANUCO

FACULTAD DE INGENIERIA PROGRAMA ACADÉMICO DE INGENIERIA CIVIL

TESIS

"Evaluación de la resistencia a la compresión del adoquín elaborado con fibras de acero más caucho reciclado en la ciudad de Huánuco - 2022"

PARA OPTAR EL TÍTULO PROFESIONAL DE INGENIERA CIVIL

AUTORA: Deudor Suarez, Yasmin

ASESOR: Aguilar Alcántara, Leonel Marlo

HUÁNUCO – PERÚ 2024

TIPO DEL TRABAJO DE INVESTIGACIÓN:

- Tesis (x)
- Trabajo de Suficiencia Profesional()
- Trabajo de Investigación ()
- Trabajo Académico ()

LÍNEAS DE INVESTIGACIÓN: Estructuras AÑO DE LA LÍNEA DE INVESTIGACIÓN (2020)

CAMPO DE CONOCIMIENTO OCDE:

Área: Ingeniería, Tecnología Sub área: Ingeniería civil

Disciplina: Ingeniería de la construcción.

DATOS DEL PROGRAMA:

Nombre del Grado/Título a recibir: Título

Profesional de Ingeniera Civil Código del Programa: P07 Tipo de Financiamiento:

- Propio (X)
- UDH ()
- Fondos Concursables ()

DATOS DEL AUTOR:

Documento Nacional de Identidad (DNI): 71528988

DATOS DEL ASESOR:

Documento Nacional de Identidad (DNI): 43415813 Grado/Título: Maestro en ingeniería civil con mención

en dirección de empresas de la construcción. Código ORCID: 0000-0002-0877-5922

DATOS DE LOS JURADOS:

N°	APELLIDOS Y NOMBRES	GRADO	DNI	Código ORCID
1	Taboada	Doctor en medio	40847625	0000-0002-
	Trujillo, William	ambiente y		4594-1491
	Paolo	desarrollo sostenible		
2	Huamán	Doctor en ciencias	42289817	0000-0002-
	Cuespan, Carlos	ambientales y		9668-6670
	Esteban	desarrollo sostenible		
3	Miraval Rojas,	Maestro en gestión y	47474699	0000-0001-
	Biseth	negocios, con		5605-3003
		mención en gestión		
		de proyectos		

UNIVERSIDAD DE HUANUCO

Facultad de Ingeniería

PROGRAMA ACADÉMICO DE INGENIERÍA CIVIL

ACTA DE SUSTENTACIÓN DE TESIS PARA OPTAR EL TÍTULO PROFESIONAL DE INGENIERO(A) CIVIL

En la ciudad de Huánuco, siendo las 18:00 horas del día lunes 02 de diciembre de 2024, en cumplimiento de lo señalado en el Reglamento de Grados y Títulos de la Universidad de Huánuco, se reunieron los Jurados Calificadores integrado por los docentes:

MG. WILLIAM PAOLO TABOADA TRUJILLO

PRESIDENTE

DR. CARLOS ESTEBAN HUAMAN CUESPAN

SECRETARIO

MG. BISETH MIRAVAL ROJAS

VOCAL

Nombrados mediante la RESOLUCIÓN No 2584-2024-D-FI-UDH, para evaluar la Tesis intitulada: "EVALUACIÓN DE LA RESISTENCIA A LA COMPRESIÓN DEL ADOQUÍN ELABORADO CON FIBRAS DE ACERO MÁS CAUCHO RECICLADO EN LA CIUDAD DE HUÁNUCO - 2022", presentado por el (la) Bachiller. Bach. Yasmin DEUDOR SUAREZ, para optar el Título Profesional de Ingeniero(a) Civil.

Dicho acto de sustentación se desarrolló en dos etapas: exposición y absolución de preguntas: procediéndose luego a la evaluación por parte de los miembros del Jurado.

Habiendo absuelto las objeciones que le fueron formuladas por los miembros del Jurado y de conformidad con las respectivas disposiciones reglamentarias, procedieron a deliberar y calificar, declarándolo(a) ... a pro budo por unanimidad con el calificativo

miembros del Jurado Calificador firman la presente Acta en señal de conformidad.

MG. WILLIAM PAOLO TABOADA TRUJILLO

DNI: 40847625 ORCID: 0000-0002-4594-1491

PRESIDENTE

ESTEBAN HUAMAN CUESPAN DR. CARLOS

DNI: 42289817 ORCID: 0000-0002-9668-6670

SECRETARIO (A)

MG. BISETH MIRAVAL ROJAS DNI: 47474699

ORCID: 0000-0001-5605-3003

VOCAL

UNIVERSIDAD DE HUÁNUCO

CONSTANCIA DE ORIGINALIDAD

El comité de integridad científica, realizó la revisión del trabajo de investigación del estudiante: YASMIN DEUDOR SUAREZ, de la investigación titulada "Evaluación de la resistencia a la compresión del adoquín elaborado con fibras de acero más caucho reciclado en la ciudad de Huánuco - 2022", con asesor(a) LEONEL MARLO AGUILAR ALCANTARA, designado(a) mediante documento: RESOLUCIÓN Nº 0360-2024-D-FI-UDH del P. A. de INGENIERÍA CIVIL.

Puede constar que la misma tiene un índice de similitud del 24 % verificable en el reporte final del análisis de originalidad mediante el Software Turnitin.

Por lo que concluyo que cada una de las coincidencias detectadas no constituyen plagio y cumple con todas las normas de la Universidad de Huánuco.

Se expide la presente, a solicitud del interesado para los fines que estime conveniente.

Huánuco, 25 de octubre de 2024

RESPONSABLE DE O INTEGRADANTE O INTE

RICHARD J. SOLIS TOLEDO D.N.I.: 47074047 cod. ORCID: 0000-0002-7629-6421 RESPONSIVALE

RESPONSIVALE

RESPONSIVALE

HUANUCO PERU

FERNANDO F. SILVERIO BRAVO D.N.I.: 40618286 cod. ORCID: 0009-0008-6777-3370

39. DEUDOR SUAREZ, YASMIN.docx

INFORME DE ORIGINALIDAD

INDICE DE SIMILITUD

FUENTES DE INTERNET

PUBLICACIONES

TRABAJOS DEL **ESTUDIANTE**

FUENTES PRIMARIAS

hdl.handle.net

Fuente de Internet

repositorio.udh.edu.pe

Fuente de Internet

1library.co
Fuente de Internet

Submitted to Universidad Cesar Vallejo

Trabajo del estudiante

dokumen.pub

Fuente de Internet

RICHARD J. SOLIS TOLEDO D.N.I.: 47074047 cod. ORCID: 0000-0002-7629-6421

FERNANDO F. SILVERIO BRAVO

D.N.I.: 40618286

cod. ORCID: 0009-0008-6777-3370

DEDICATORIA

Dedico con profundo amor y agradecimiento este trabajo de investigación a mis queridos padres Rosa Suarez Y Artemio Deudor, cuyo inquebrantable apoyo y sacrificio han sido la base de mi crecimiento académico y personal. Ami amado hermano Jhordan Deudor, compañero de risas y confidente en cada paso del camino, su aliento ha sido mi fuerza.

A Maycold Cabello con quien compartí momentos significativos en mi vida universitaria, a nuestro hijo Maykeld Cabello Deudor, quien es el pilar de nuestras vidas.

A mi propia familia, el pilar de mi existencia, gracias por su paciencia, comprensión y amor incondicional. Este logro no solo es mío, sino también de cada uno de ustedes que ha formado parte de mi viaje. Cada esfuerzo, cada desafío superado y cada alegría compartida son testamento de la unión y fortaleza que nos define como familia. Este trabajo es un modesto tributo a la unidad y amor que compartimos.

AGRADECIMIENTOS

Expreso mi sincero agradecimiento a la Universidad de Huánuco por brindarme la oportunidad de explorar y crecer intelectualmente. Agradezco a mis respetados docentes, cuyas enseñanzas y orientación han sido fundamentales en el desarrollo de este trabajo de investigación. Su dedicación y conocimiento han sido una fuente constante de inspiración.

Además, quiero expresar mi gratitud a mis estimados colegas, cuya colaboración y apoyo han enriquecido significativamente este proceso. Juntos, hemos compartido ideas, superado desafíos y celebrados logros, creando un ambiente académico estimulante.

Este trabajo no solo es el resultado de mi esfuerzo individual, sino también de la contribución invaluable de la comunidad académica que me rodea. A todoslos que han formado parte de este viaje

ÍNDICE

DEDICATORIA		11
AGRADECIMIENTOS		Ш
ÍNDICE		V
ÍNDICE DE TABLAS	V	Ш
ÍNDICE DE FIGURAS	D	X
RESUMEN	×	(
ABSTRACT	X	Ш
INTRODUCCIÓN	XI	Ш
CAPITULO I	1	5
PROBLEMA DE INVESTIGAC	CIÓN1	5
1.1. DESCRIPCIÓN DEL	PROBLEMA1	5
1.2. FORMULACIÓN DEL	PROBLEMA1	7
1.2.1. PROBLEMA GEN	NERAL1	7
1.2.2. PROBLEMAS ES	SPECÍFICOS1	7
1.3. OBJETIVO GENERA	L1	7
1.3.1. OBJETIVO GENE	ERAL1	7
1.3.2. OBJETIVOS ESF	PECÍFICOS1	7
	LA INVESTIGACIÓN1	
1.4.1. JUSTIFICACIÓN	METODOLÓGICA1	8
1.4.2. JUSTIFICACIÓN	PRÁCTICA1	8
1.4.3. JUSTIFICACIÓN	METODOLÓGICA1	9
1.5. LIMITACIONES DE L	A INVESTIGACIÓN20	0
1.5.1. DELIMITACIÓN [DE LA INVESTIGACIÓN20	0
1.6. VIABILIDAD DE LA II	NVESTIGACIÓN2	1
CAPITULO II	2	2
MARCO TEÓRICO	2	2
2.1. ANTECEDENTES DE	E LA INVESTIGACIÓN2	2
2.1.1. ANTECEDENTES	S INTERNACIONALES2	2
2.1.2. ANTECEDENTES	S NACIONALES29	5
2.2. BASES TEÓRICAS	2	7
2.2.1. ACERO	2	7
2.2.2. CAUCHO	3	1

2.2.2	. ADOQUÍN	33
2.3.	DEFINICIONES CONCEPTUALES	36
2.4. H	HIPÓTESIS	38
2.4.1	. HIPÓTESIS GENERAL	38
2.4.2	. HIPÓTESIS ESPECIFICA	38
2.5. \	/ARIABLES	39
2.5.1	. VARIABLE DEPENDIENTE	39
2.5.2	. VARIABLE INDEPENDIENTE	39
2.6.	DPERACIONALIZACIÓN DE VARIABLES	40
CAPITUL	.0	42
METODO	DLOGIA DE LA INVESTIGACIÓN	42
3.1.	TIPO DE INVESTIGACIÓN	42
3.1.1	. ENFOQUE	42
3.1.2	. ALCANCE O NIVEL	42
3.1.3	. DISEÑO	42
3.2. F	POBLACIÓN Y MUESTRA	43
3.2.1	. POBLACIÓN	43
3.2.2	. MUESTRA	43
3.3.	TÉCNICAS E INSTRUMENTOS DE RECOLECCIÓN DE DATOS	.44
3.3.1	. TÉCNICA	44
3.3.2	. INSTRUMENTOS	44
3.4.	TÉCNICAS PARA EL PROCESAMIENTO Y ANÁLISIS DE LA	
INFOR	MACIÓN	45
3.4.1	. TÉCNICAS DE PROCESAMIENTO	45
3.4.2	. ANÁLISIS DE LA INFORMACIÓN	45
CAPITUL	.O IV	46
RESULT	ADOS	46
4.1.	DE LA DETERMINACIÓN DE LA RESISTENCIA A LA	
COMP	RENSIÓN DE LOS ADOQUINES ELABORADOS CON FIBRAS	DE
ACERO	D MÁS CAUCHO	46
4.1.1	. DE LA COMPARACIÓN DE MEDIA DE LOS	
TRA	TAMIENTOS	46
4.1.2	. DE LA COMPARACIÓN DE MEDIAS DE LAS VARIABLES D	ÞΕ
FSTI	IDIO EN LOS TRATAMIENTOS	<i>4</i> 7

4.2. DE LA DETERMINACIÓN DE LA RESISTENCIA A LA	
COMPRENSIÓN DE LOS ADOQUINES HECHOS CON UN 15,	25 Y 35%
DE FIBRAS DE ACERO MÁS CAUCHO RECICLADO	47
4.3. DEL PROCESAMIENTO DE DATOS	48
4.4. DE LA CONTRASTACIÓN Y PRUEBA DE HIPÓTESIS	54
4.4.1. PLANTEAMIENTO DE LA HIPÓTESIS GENERAL	54
4.4.2. PRUEBA DE HIPÓTESIS	54
4.4.3. CONTRASTACIÓN DE LA HIPÓTESIS GENERAL	55
4.4.4. HIPÓTESIS ESPECIFICA 1	57
4.4.5. HIPÓTESIS ESPECIFICA 2	60
4.4.6. HIPÓTESIS ESPECIFICA 3	63
CAPITULO V	67
DISCUSIÓN DE RESULTADOS	67
5.1. PRESENTACIÓN DE LA CONTRASTACIÓN DE LOS	
RESULTADOS DEL TRABAJO DE INVESTIGACIÓN	67
CONCLUSIONES	69
RECOMENDACIONES	70
REFERENCIAS BIBLIOGRÁFICAS	71
ANEXOS	76

ÍNDICE DE TABLAS

Tabla 1 Clases de acero	. 31
Tabla 2 Tipo de adoquín	. 34
Tabla 3 F´c y espesor del adoquín	. 35
Tabla 4 Variación dimensional	. 35
Tabla 5 Cantidad de muestras a realizar	. 44
Tabla 6 Media de la resistencia a la comprensión de los tratamientos (F'c) lo	วร
tratamientos	46
Tabla 7 Comparación de media de los tratamientos de la variable resistenci	аа
la comprensión (F'c Kg/Cm2)	46
Tabla 8 f´c de adoquín patrón a 28 días	48
Tabla 9 Valores estadísticos de la F´c del adoquín patrón	. 48
Tabla 10 F´c de los adoquines con fibras de acero más caucho reciclado al	
15% a 28 días	49
Tabla 11 Valores de los F´c del adoquín con fibras de acero más caucho	
reciclado al 15%	.50
Tabla 12 F´c de los adoquines con fibras de acero más caucho reciclado al	
25% a 28 días	.51
Tabla 13 Valores de los F´c del adoquín con fibras de acero más caucho	
reciclado al 25%	.51
Tabla 14 F´c de los adoquines con fibras de acero más caucho reciclado al	
35% a 28 días	. 52
Tabla 15 Valores de los F´c del adoquín con fibras de acero más caucho	
reciclado al 35%	.53
Tabla 16 Comparación del F´c del adoquín patrón y con 15%, 25% y 35% d	е
acero más caucho reciclado	. 55
Tabla 17 Comparativa de los F´c de los adoquines patrón y del promedio co	n
15%, 25% y 35% de fibras de acero más caucho reciclado	. 56
Tabla 18 Prueba de normalidad de los f´c de los adoquines patrón y del	
promedio con 15%, 25% y 35% de fibras de acero más caucho reciclado	. 57
Tabla 19 F´c del adoquín patrón y con 15% de acero más caucho reciclado.	. 58
Tabla 20 Comparativa de medias de los F´c de los adoquines patrón y con	
15% de fibras de acero más caucho reciclado	. 59

Tabla 21 Normalidad de los F´c adoquín patrón y con 15% de fibras de acerc)
más caucho reciclado.	59
Tabla 22 Prueba "t" evaluada en las muestras Independientes (0% y 15%)	60
Tabla 23 F´c del adoquín patrón y con 25% de fibras de acero más caucho	
reciclado	61
Tabla 24 Comparativa de medias de los F´c de los adoquines patrón y con	
25% de fibras de acero más caucho reciclado	62
Tabla 25 Normalidad de los F´c adoquín patrón y con 25% de fibras de acerd	Э
más caucho reciclado.	62
Tabla 26 Prueba t evaluada en las muestras independientes (0 y 25%)	63
Tabla 27 F´c del adoquín patrón y con 35% de fibras de acero más caucho	
reciclado	64
Tabla 28 Comparativa de medias de los F´c de los adoquines patrón y con	
35% de fibras de acero más caucho reciclado	65
Tabla 29 Normalidad de los F´c adoquín patrón y con 35% de fibras de acerd	C
más caucho reciclado	65
Tabla 30 Prueba "t evaluada en las muestras independientes 0 v 35%	66

ÍNDICE DE FIGURAS

Figura 1 Tipo de adoquín	34
Figura 2 Tolerancia de adoquines	35
Figura 3 Valores de las variables de estudio	47
Figura 4 Determinación de la resistencia a la comprensión de los ado	quines
a los 28 días de evaluación	47
Figura 5 F´c de los adoquines patrón	49
Figura 6 F´c del adoquín con fibras de acero más caucho reciclado a	l 15% 50
Figura 7 F´c del adoquín con fibras de acero más caucho reciclado a	l 25% 52
Figura 8 F´c del adoquín con fibras de acero más caucho reciclado a	l 35% 53
Figura 9 Resultados de la prueba de hipótesis de la variable de estuc	lio54
Figura 10 Comparación de los F´c de los ensayos realizados en	
laboratorio	56
Figura 11 Comparación de los F´c de los ensayos realizados en	
laboratorio	58
Figura 12 Comparación de los F´c de los ensayos realizados en	
laboratorio	61
Figura 13 Comparación de los F´c de los ensayos realizados en	
laboratorio	64
Figura 14 Cuarteo de los agregados	96
Figura 15 Granulometría de agregados	96
Figura 16 Proceso de granulometría de agregados	97
Figura 17 Proceso de secado de agregados	98
Figura 18 Peso volumétrico de los agregados	98
Figura 19 Proceso de secado de agregados	99
Figura 20 Peso volumétrico de los agregados	99
Figura 21 Proceso del pesado	100
Figura 22 Ensayo de compactado	100
Figura 23 Proceso del compactado	101
Figura 24 Ensayo de compactado	101
Figura 25 Ensayo de densidad de agregados	102
Figura 26 Ensayo de densidad de agregados	102
Figura 27 Ensayo de densidad de agregados	103

Figura 28 Ensayo de densidad de agregados	103
Figura 29 Ruptura de probetas a los 28 días	104
Figura 30 Ruptura de probetas a los 28 días	104
Figura 31 Ruptura de probetas a los 28 días	105

RESUMEN

La investigación tuvo como propósito evaluar la mejora de la resistencia a la compresión deadoquines mediante la adición de diferentes porcentajes de fibras de acero y caucho reciclado. Se llevaron a cabo pruebas comparativas utilizando mezclas con adiciones del 15%, 25% y 35% de estos materiales en la composición de los adoquines. El trabajo de investigación fue de enfoque cuantitativo con diseño experimental, tipo aplicativo. Los resultados indicaron un incremento significativo en la resistencia a la compresión y mostrando con una diferencia estadística significativa entre los tratamientos, T₁, T₂, T₃, T₄ cuyos valores de sus medias fueron: 352.356 kg/cm², 421.391 kg/cm², 502.405 kg/cm² y 561.434 kg/cm² respectivamente. Se observó una sinergia efectiva entre ambos materiales, contribuyendo a una mejora sustancial en la capacidad decarga de los adoquines. Además, se identificó que la proporción óptima para maximizar la resistencia a la compresión fue del 35%. Se concluye que los hallazgos sugieren un potencial prometedor para la implementación de adoquines mejorados, equilibrando eficazmente la resistencia mecánica con consideraciones económicas y de sostenibilidad.

Palabras clave: Adoquines, pavimento, fibras de acero, caucho reciclado, resistencia.

ABSTRACT

The purpose of the research was to evaluate the improvement of the compressive strength of pavers by adding different percentages of steel fibers and recycled rubber. Comparative tests were carried out using mixtures with additions of 15%, 25% and 35% of these materials in the composition of the paving stones. The research work had a quantitative approach with experimental design, application type. The results indicated a significant increase in compressive strength and showing a significant statistical difference between the treatments, T₁, T₂, T₃, T₄ whose mean values were: 352.356 kg/cm², 421.391 kg/cm², 502.405 kg/cm², cm² and 561,434 kg/cm² respectively. An effective synergy was observed between both materials, contributing to a substantial improvement in the load capacity of the pavers. Furthermore, it was identified that the optimal proportion to maximize compressive strength was 35%. It is concluded that the findings suggest promising potential for the implementation of improved pavers, effectively balancing mechanical strength with economic and sustainability considerations.

Keywords: Cobblestones, pavement, steel fibers, recycled rubber, endurance.

INTRODUCCIÓN

En la actualidad, la industria de la construcción enfrenta desafíos significativos relacionados con la sostenibilidad y el impacto ambiental de los materiales utilizados. La búsqueda de soluciones innovadoras que permitan reducir la dependencia de recursos no renovables y mejorar las propiedades mecánicas de los materiales de construcción ha llevado a la exploración de alternativas que incorporen materiales reciclados y de desecho. En este contexto, el uso de fibras de acero y caucho reciclado en la fabricación de adoquines presenta una oportunidad prometedora para mejorar sus características mecánicas y contribuir a la sostenibilidad ambiental.

La ciudad de Huánuco, al igual que muchas otras regiones, enfrenta problemas relacionados con la gestión de residuos sólidos, entre ellos, el caucho proveniente de neumáticos desechados. La inclusión de este material en la fabricación de adoquines no solo ofrece una solución para el reciclaje de neumáticos, sino que también puede mejorar la resistencia a la compresión de los adoquines, un aspecto crítico para su durabilidad y desempeño en pavimentos y áreas peatonales.

El presente estudio se enfoca en analizar la influencia de la adición de un 15%, 25% y 35% de fibras de acero y caucho reciclado en la resistencia a la compresión (F'c =kg/m²) de adoquines fabricados en la ciudad de Huánuco. La elección de estos materiales se basa en investigaciones previas que han demostrado mejoras en las propiedades mecánicas de diversos productos de construcción mediante el uso de fibras de acero y caucho reciclado. Sin embargo, es necesario evaluar específicamente cómo estas combinaciones afectan la resistencia a la compresión de los adoquines en el contexto regional y local.

El objetivo general de esta investigación fue determinar la resistencia a la compresión (F'c =kg/m²) del adoquín elaborado con fibras de acero y caucho reciclado en la ciudad de Huánuco durante el año 2022. Para lograr este objetivo, se llevó a cabo pruebas experimentales que permitieron comparar la resistencia a la compresión de adoquines con diferentes

proporciones de fibras de acero y caucho reciclado. Asimismo, se analizó los resultados obtenidos para establecer conclusiones sobre la viabilidad y beneficios de utilizar estos materiales en la fabricación de adoquines en la región.

Este estudio no solo contribuirá al conocimiento técnico sobre el uso de materiales reciclados en la construcción, sino que también proporcionará una solución práctica y sostenible para la gestión de residuos de caucho en Huánuco. Además, los resultados obtenidos servirán como referencia para futuras investigaciones y proyectos de construcción que busquen incorporar materiales reciclados y mejorar la sostenibilidad de la industria.

En resumen, la investigación realizada tuvo como propósito evaluar la influencia de la incorporación de un 15%, 25% y 35% de fibras de acero y caucho reciclado en la resistencia a la compresión (F'c =kg/m²) de adoquines, con el objetivo de determinar la viabilidad y los beneficios de esta combinación en la ciudad de Huánuco.

CAPITULO I

PROBLEMA DE INVESTIGACIÓN

1.1. DESCRIPCIÓN DEL PROBLEMA

El problema de la industria de la construcción es responsable de más del 30% de la extracción de recursos naturales y el 25% de los residuos sólidos generados debido a su modelo económico lineal de tomar, hacer, desechar lo que le permite adoptar un modelo económico lineal, generando residuos y confiando en materiales de un solo uso, lo que conduce a una mayor generación de residuos y extracción de recursos (Benachio, et al., 2020).

Los proyectos de construcción a menudo se enfrentan a sobrecostos debido a estimaciones iniciales inexactas, cambios en el alcance del proyecto, condiciones imprevistas del sitio y fluctuaciones en los costos de materiales y mano de obra (Basar y Basar, 2023).

La industria de la construcción contribuye a la contaminación del aire, pero la optimización de los procesos y el uso de materiales más saludables pueden ayudar a crear un entorno construido más saludable y apoyar un aire más limpio durante todo el ciclo de vida (Wieser, et al., 2021).

La contaminación de la construcción en el mundo proviene principalmente del aire, el agua, el ruido y los desechos sólidos, y los contratistas desempeñan un papel clave en la reducción de la contaminación y la implementación de actividades relevantes (Rahman, et al., 2019)

El uso intensivo de maquinaria en la industria de la construcción contribuye a las emisiones de contaminantes atmosféricos, incluidos los gases de efecto invernadero, las partículas y los gases de escape de los motores diésel, lo que provoca graves problemas medioambientales y el cambio climático (Wang, et al., 2018).

Existe una considerable infrautilización de áridos reciclados en los nuevos materiales de construcción, principalmente debido a la falta de confianza en el material entre los contratistas y diseñadores (Silva, et al., 2019)

Los materiales de desecho de la construcción como el hormigón, el plástico, la madera, la cerámica y el amianto contienen compuestos peligrosos que afectan al medio ambiente y a la humanidad cuando se desechan sin las prácticas adecuadas de gestión de residuos (Manoharan, et al., 2021)

El caucho, los textiles y la cerámica han reducido significativamente la atención a la investigación, pero su uso en la construcción podría mitigar la acumulación de vertederos y los efectos ambientales perjudiciales (Haigh, 2023).

La planificación y el control ineficaces de los materiales en las obras de construcción, las repeticiones de trabajos debido a la no conformidad con las especificaciones y los cambios y revisiones de diseño son los tres factores que más contribuyen a la generación de residuos de materiales en el mundo (Adewuyi y Odesola, 2015).

La mayoría de los proyectistas y contratistas no consideran las obras viales con adoquines ya que es muy escasa la producción en nuestro país y región por otro lado, los antioxidantes del caucho y sus productos de transformación pueden afectar negativamente a los organismos ambientales y provocar eventos ambientales, (Xu, et al., 2022).

Los productos de caucho en el mundo tienen impactos ambientales significativos, como toxicidad humana, eutrofización y material particulado/inorgánicos respiratorios, originados por el consumo de leña y la adquisición de látex fresco (Pyay, et al., 2019)

En la región Huánuco donde predomina en su mayoría pavimentos flexibles en la carretera central como en sus calles, donde la mayoría de estas encuentra deteriorada, esta investigación busca dar una alternativa para el diseño de obras viales con adoquines, donde estén reforzados con materiales que les pueden dar mayor resistencia al añadirles en su diseño de mezcla.

1.2. FORMULACIÓN DEL PROBLEMA

1.2.1. PROBLEMA GENERAL

Cuál será la influencia en la resistencia a la comprensión del adoquín elaborado con fibras de acero más caucho reciclado en la ciudad de Huánuco - 2022

1.2.2. PROBLEMAS ESPECÍFICOS

Cuál es la influencia en la resistencia a la compresión del adoquín elaborado con un 15% de fibras de acero más caucho reciclado en la ciudad de Huánuco – 2022?

Cuál es la influencia en la resistencia a la compresión del adoquín elaborado con un 25% de fibras de acero más caucho reciclado en la ciudad de Huánuco – 2022

Cuál es la influencia en la resistencia a la compresión del adoquín elaborado con un 35% de fibras de acero más caucho reciclado en la ciudad de Huánuco – 2022

1.3. OBJETIVO GENERAL

1.3.1. OBJETIVO GENERAL

Determinar la resistencia a la compresión del adoquín elaborado con fibras de acero más caucho reciclado en la ciudad de Huánuco – 2022.

1.3.2. OBJETIVOS ESPECÍFICOS

Determinar la resistencia a la compresión del adoquín elaborado con un 15% de fibras de acero más caucho reciclado en la ciudad de Huánuco –2022.

Determinar la resistencia a la compresión del adoquín elaborado con un 25% de fibras de acero más caucho reciclado en la ciudad de Huánuco –2022.

Determinar la resistencia a la compresión del adoquín elaborado

con un 35% de fibras de acero más caucho reciclado en la ciudad de Huánuco –2022.

1.4. JUSTIFICACIÓN DE LA INVESTIGACIÓN

1.4.1. JUSTIFICACIÓN METODOLÓGICA

En la investigación se tomó un enfoque cuantitativo porque estableceremos cantidades tomados por un análisis estadístico que también tiene un diseño experimental ya que establecimos nuevos parámetros de investigación con la adición de fibras de acero y caucho reciclado en la elaboración de adoquines, la investigación tiene un alcance aplicativo ya quese determinaran por la autora si es favorable la investigación.

1.4.2. JUSTIFICACIÓN PRÁCTICA

La adición de fibras de acero y caucho reciclado puede potencialmente mejorar el F´c de los adoquines, lo que resulta en pavimentos más duraderos y resistentes al desgaste, reduciendo la necesidad de mantenimiento y reparación. El uso de materiales reciclados, como el caucho proveniente de neumáticos desechados, puede contribuir a la reducción de costos deproducción y disminuir la demanda de recursos naturales no renovables, al mismo tiempo que fomenta prácticas más sostenibles en la industria de la construcción. La mejora en la resistencia a la compresión puede hacer que los adoquines sean más adecuados para condiciones climáticas extremas, como heladas y altas temperaturas, lo que aumentaría su durabilidad y rendimiento en una variedad de entornos.

En la ingeniería, permitirá materializar la matemática, la física y la geometría, pues de diseñaran, realizaran cálculos y aplicaran modelos matemáticos para relacionar la estructura geométrica con la trabajabilidad del concreto haciéndolo más eficientes la unión fibramatriz y las resistencias a la comprensión.

El uso de material reciclado permite y proporciona nuevas

alternativas sostenibles para el medio ambiente permitiendo que los recursos de las fibras de acero se mantengan y no se desechen lo que reduce el impacto ambiental sin alterar sus propiedades mecánicas.

El uso de fibras de acero y caucho recicladas en el concreto reduce las emisiones de CO₂ y proporciona alternativas sostenibles y conservadoras de recursos a las fibras de acero industriales.

El uso de fibras de acero y caucho reciclado en concreto aumenta la resistencia a la tracción en un 46% y la resistencia a la flexión en un 36% en comparación con la convencional teniendo un impacto económico por que se excluirá al agregado grueso en porcentajes reduciendo así su costo de producción.

Permitirá usar tecnología limpia para la elaboración del concreto creando conocimiento científico nuevo para que pueda transferirse en los en las ramas de la ingeniería que se dedican a su estudio.

1.4.3. JUSTIFICACIÓN METODOLÓGICA

Para hacer los adoquines con adición de fibras de acero y caucho reciclado se llegó a mejorar o tener una resistencia similar en F´c igual a unadoquín convencional.

Con los adoquines de fibras de acero y caucho reciclado también se disminuyó en parte en la contaminación que se tiende hacer desechados por los mismos pobladores de Huánuco como son los materiales de construccióncomo aceros de distintas propiedades como también desechan caucho o si no lo queman así dañando más al ecosistema del planeta como también afectando la salud de los mismos pobladores como por ejemplo los neumáticos.

El concreto reforzado con fibra reciclada muestra un potencial para reducir el impacto ambiental, porque permite reducir el consumo de energía, influye en la mitigación calentamiento del global y contribuyendo a una economía circular en la industria de la construcción, además que le brindara al concreto una eficiente ductilidad.

El agregar materiales reciclados como fibra de acero y caucho de diferentes longitudes y diámetros permitirá mejorar significativamente las propiedades mecánicas del concreto, aumentando la resistencia a la compresión en un 10% y un 25% y a la tracción directa entre un 31% y un 47%, lo que proporciona propiedades mecánicas mejoradas para mejorar los costos de construcción.

El uso de material reciclado permitirá crear nueva información científica que serán expuestos la base de datos de la universidad para generar nuevos conocimientos a partir de ella, la cual será respaldad por la nueva información que encuentre la comunidad científica.

1.5. LIMITACIONES DE LA INVESTIGACIÓN

La evaluación del nivel el F'c del adoquín elaborado con fibras de acero más caucho reciclado hay muy pocas investigaciones donde podemos recolectar más información.

- Para un diseño estructural reforzado se deben considerar evaluar los parámetros de resistencia, elasticidad y comportamiento sismo resistente el cual los últimos dos parámetros no se consideraron en la presente investigación por factores económicos y falta de instrumentos de recolección de datos.
- No existe una metodología que apruebe las nuevas técnicas mixtas relacionados con el material demostrando su funcionamiento y su adecuado comportamiento sísmico.

1.5.1. DELIMITACIÓN DE LA INVESTIGACIÓN

DELIMITACIÓN ESPACIAL

El proyecto de investigación se desarrolló en el departamento de Huánuco, provincia Huánuco exclusivamente en el distrito de Huánuco, los materiales reciclados se recolectaron de los talleres de mecánica de tornillo de banco en el caso de las fibras de acero (tornería) y para el caso del caucho de las vulcanizadoras y tiendas de llanterías pertenecientes al mismo distrito

> DELIMITACIÓN TEMPORAL

Los datos que se consideraron en el presente trabajo de investigación fueron enmarcados entre los meses de Julio a Setiembre del año 2022, cuyas muestras evaluadas fueron a los 28 días

DELIMITACIÓN ACADÉMICA

El proyecto de investigación planteado y ejecutado cumplió con lo exigido por la Universidad de Huánuco referente al grado de investigación, las normas y esquema de presentación para proyectos de tesis para esto se sustenta bibliografías, textos y resultados de las variables de estudio

1.6. VIABILIDAD DE LA INVESTIGACIÓN

Para la realización del presente trabajo de investigación se consideró los siguientes parámetros:

- Se contó con los recursos económicos necesarios para realizar los gastos de los análisis de laboratorio de las variables de estudio, el financiamiento fue a través de los recursos propios
- Se contó con la tecnología a adecuada (Laboratorios) para la generación de los datos de las variables de estudio en el ámbito de la ejecución del proyecto
- Existieron estudios previos que proporcionaron una base sólida para la fundamentación del proyecto de investigación lo que permitió definir las hipótesis de trabajo.
- La accesibilidad a fibras de acero y caucho reciclado fue esencial para llevar a cabo el estudio, y se encuentro de manera directa para ser reciclada en centros de acopio.
- Se cuento con la participación de profesionales y expertos en materialesde construcción, ingeniería civil, y técnicos de laboratorio.

CAPITULO II

MARCO TEÓRICO

2.1. ANTECEDENTES DE LA INVESTIGACIÓN

2.1.1. ANTECEDENTES INTERNACIONALES

Pérez y Pullas (2022), en la tesis titulada *Diseño de hormigón hidráulico para adoquín vehicular de alta resistencia utilizando arena volcánica, fibra de acero y PET* Tesis para obtener el título profesional de Ingeniero Civil. Universidad Laica Vicente Rocafuerte. Guayaquil – Ecuador. Tuvo como objetivo principal, diseñar de piso de cabina de concreto hidráulico de alta resistencia utilizando arena volcánica, fibra de acero y PET.

Los resultados obtenidos fueron a los 7 días aplicando una carga de una carga de 17.288 Kg y luego una carga de y luego con una carga de 22.915 Kg la resistencia a la comprensión obtuvo un valor de 114,575 Kg/cm2, con una carga de 14.660 Kg y una segunda carga de 23.369 Kg generando la rotura del adoquín reporta un valor de 116,845 Kg/cm2.

Esta investigación concluye que las dosificaciones del concretopara que el piso de la cabina tenga alta resistencia son: piedra en 35.54 kg, arena 23.07 kg, cemento 19.14 kg, agua 7,66 kg. Mediante la construcción de un prototipo adoquinado de concreto con arena volcánica, fibras de aceroy PET su F´c= 186 kg/cm².

Angarita y Lizarazo (2018), en la tesis titulada Análisis del comportamiento mecánico de adoquines de concreto con adición de fibra deacero de llantas recicladas con adición de fibra de acero de llantas recicladas. Tesis. Universidad De La Salle Facultad De Ingeniería. Bogotá — Colombia. Tuvo como objetivo principal, la evaluación mecánica de pavimentos de hormigón armado con fibras de acero reciclado de neumáticos. Donde obtuvo como resultado la resistencia a la flexión de los hilos más gruesos en los porcentajes de 0,07% y 0,15%

aumentó en 2,55%y 1,31%, respectivamente, en comparación con el patrón, mientras que en los porcentajes de 0,22 y 0,29% de este hilo, respectivamente, su resistencia a la flexión disminuyó en 22,76%. y 33,13% respecto a la muestra sin adiciónde fibras de acero y en el caso de los hilos finos aumentó en un 0,02%, 0,05% y 0,07% frente a la muestra estándar en un 7,59%, 2,66% y 3,56%, respectivamente, mientras que la tasa del 0,09% disminuyó en un 33,13% respecto de la misma. La investigación concluye que, la proporción óptima de propiedades de penetración, compresión, abrasión y absorbencia, así como el tiempo de limpieza óptimo para las fibras de acero, es 0,02%.

Pérez y Arrieta (2017), en la tesis titulada *Estudio para caracterizar* una mezcla de concreto con caucho reciclado en un 5% en peso comparadocon una mezcla de concreto tradicional de 3500 PSI Tesis para obtener el título profesional de Ingeniero Civil. Universidad Católica – Colombia. tuvo como propósito principal, Diseñar para concreto de 3500 psi con una mezcla de partículas finas y gruesas al 5% de partículas finas y gruesas en proporciones variables, en comparacióncon las mezclas convencionales.

Los resultados obtenidos son. La mezcla que presentó mejor comportamiento fue (C30%/70%), con respecto a esta mezcla que contiene 30% caucho grueso y 70% caucho blando en 5%, su resultado fue mejor que otros por la pequeña porosidad que se presenta conlos materiales finos, que produce menos puntos de fractura. La investigación concluye que La mezcla que mejores resultados da en cuanto a resistencia a la compresión es C30%/70%, que es capaz de reemplazar el caucho blando con mejores agregados, con un valor de 2244 Psi, que es un 39% menos que una mezcla convencional.

Paredes (2021), en la tesis titulada *Análisis de concreto adicionado* con residuos de llanta de caucho para la elaboración de prefabricados para urbanismo. Tesis. Universidad Militar Nueva Granda – Bogotá Colombia -tuvo como objetivo principal, Determinar la viabilidad técnica de la mezcla de hormigón en sustitución parcial del árido fino, con

neumáticos de desecho de caucho, para producir elementos prefabricados en obras de urbanismo yasí reducir el impacto sobre el medio ambiente. Los resultados obtenidos demuestran que hay una relación entre la resistencia a la compresión y el contenido de aire obstruido en la mezcla cuando se reemplaza parcialmenteel agregado fino. Aunque se redujo el 8 % en su F´c, se consideraría insignificante si se cambiara el diseño para compensar ese 8%. La disminución del F´c puede deberse al aumento del acondicionamiento, ya que la arena absorbente de agua ya no está disponible cuando se reemplaza con caucho. La investigación concluye que, De acuerdo con la normativa, el uso de hormigón solo se limita a resistencias superiores a 19 MPa y como lo demuestra el levantamiento, la resistencia se puede ajustar en el proyecto.

Mejía (2020) realiza el trabajo de investigación Análisis de la influencia del caucho de llantas recicladas como agregado en la fabricación de adoquines de concreto, Tesis. Universidad de Cartagena - Colombia. su objetivo fue analizar el efecto del caucho reciclado como sustituto parcial de llantas por agregado fino en la producción de pavimentos de concreto, se evaluarán las propiedades físicos y mecánicas de este componente mediante ensayos correspondientes. Los resultados obtenidosen la investigación son debe recordarse que el índice de desgaste está directamente relacionado con la absorción y el F´c, y este número puede incrementarse si se realiza un esfuerzo vibratorio adecuado durante lafabricación de la muestra, mejorando así el índice de desgaste. La investigación concluye que tenga en cuenta cómo los resultados positivos fueron en una prueba de absorbencia y de ruptura pueden determinarse porla cantidad de caucho utilizada, así como los resultados positivos en el indicador. El número de muestras abrasivas contiene hasta un 20% de caucho. Usar de 5% a 30% de caucho para reemplazar la masa total de arena, variando el porcentaje dentro del rango especificado, dependiendo del uso previsto o aplicación final a la que se destinan los adoquines de fondo.

2.1.2. ANTECEDENTES NACIONALES

Rea (2022), en su tesis. Estudio de las propiedades físicomecánicas en adoquines de concreto para tránsito peatonal incorporando viruta metálica y caucho reciclado, Andahuaylas 2021, su objetivo fue determinar las propiedades físicas y mecánicas de del pavimento rígido con un 3%, 5%y 7% de caucho y virutas metálicas. Donde obtuvo sus resultados que al agregar un 5% de las virutas metálicas en 28 días se obtiene una pérdida deresistencia del 6,8% y al agregar un 7% aumenta la resistencia en un 2,8% comparado con el concreto convencional.

Chavarri y Rubio (2020), en la tesis titulada Efecto del caucho reciclado en la resistencia a compresión en adoquines de concreto diseñados para pavimentos articulados. Su objetivo fue determinar el efecto del caucho reciclado en el F´c de pisos de concreto diseñados para pisos articulados. Los resultados obtenidos en la investigación son. Análisis de resistencia a compresión de adoquines con adición de (3, 5 y 7) % con caucho en lugar deagregado fino; Se puede decir que en el caso de pavimento modificado con3% de caucho, los valores de su F´c de las tres probetas a 28 días son: (310.042 kg/cm2), (318.118 kg/cm²) y (328.313 kg/ cm²); Con estos valoresobtuvimos valores 318,82 kg/cm² inferiores al hormigón estándar. La investigación concluye que los valores de resistencia a la compresión del concreto estándar, así como los reemplazados por agregados finos se obtuvieron en 3%, 5% y 7% de caucho reciclado, ya que se observó que el concreto modificado con caucho difería significativamente con respecto a unpatrón particular. Por lo tanto, consideramos inadecuado utilizar caucho reciclado en esta proporción.

Manrique y Manrique (2021), en su estudio. Elaboración de adoquines de concreto ecológico con adición de caucho y acero reciclado, para pavimentos de tránsito ligero - Mazamari 2021, donde su objetivo fue desarrollar adoquines de concreto ecológico para tránsito ligero con incorporación de caucho reciclado y acero, f´c = 320 kg/cm2.

La investigación tiene como resultados sus F´c de pavimentación estándar, en 3 días alcanza 275.7 kg/cm 2 , en 7 días 338.5 kg/cm2 y en 14 días se obtuvola resistencia 386.8 kg/cm2, de igual manera el F´c con la adición de cauchoreciclado y acero, luego de 7 días se obtuvo un pavimento A-3% con un promedio de 1.5% de caucho y 1.5% de acero, del curado 263,8 kg/cm2, en 14 días 311,4 kg/cm2, en 28 días 356,5 kg/cm2, obtuvimos cortador B-6% con promedio de 3% caucho alto y 3% sólido, en 7 días 217,6kg/cm2, en 14 días 251,1 kg/cm2, en 28 días 330,2 kg/cm2, se obtiene un segmento C-9% con un promedio de 4,5% caucho y 4,5% sólidos, a los 7 días 194,5 kg/cm2, en 14 días 230,1 kg/cm2, en 28 días 317,2 kg/cm2. La investigación tiene como conclusión Todos los valores del F´c de los adoquines de concreto ecológico se obtuvieron de muestras estándar y de muestras de 3%, 6% y 9% de caucho y acero reciclados, donde podemos notar que los adoquines con caucho y acero reciclados tenía ligeras diferencias con los adoquines estándar.

Gutiérrez y Vizarreta (2021), en la tesis titulada. Incremento del módulo de rotura por flexo tracción de losas de concreto hidráulico empleando fibrasde acero provenientes de neumáticos reciclados para uso como losas en pavimentos. Su objetivo fue aumentar el módulo de fractura al aumentar la resistencia a la tracción por flexión de la losa de concreto hidráulico del pavimento de acero y agregar fibras de acero recicladas de llantas desechadas a la mezcla. Los resultados obtenidos en la investigación. La resistencia a compresión a los 28 días del hormigón armado supera significativamente el valor de 350 kgf/cm2, logrando la resistencia específicade unos 450 kg/cm2. La investigación concluye que a partir de los primeros 7 días de ensayos de flexión, con diferentes dosis de acero libre de acero y alto contenido de fibra (reciclado y comercial), se obtuvo un mayor incremento en función de la cantidad de acero en la mezcla, inmediatamenteen la misma proporción de acero con 1,0 kg por lote, a Mayores resultados utilizando hilo reciclado (47,5 kg/cm²) en comparación con hilo comercial (46,6 kg/cm²).

Santos y Tacuri (2019), en la tesis titulada Diseño de pavimentos conadoquines de concreto adicionando fibra de acero, Avenida César

Vallejo, Villa el Salvador – Lima- 2019, su objetivo fue diseñar un pavimento de fibrade acero para mejorar la durabilidad del proyecto vial. Los resultados obtenidos fueron la mejora de la resistencia en 640 kg/cm², lo que indica unamejora significativa en la superficie de rodadura. También mediante lainvestigación de agregados mediante ensayos de granulación se obtuvo quelos materiales existentes son aptos para el diseño de pisos, obtenidos de canteras Gloria, donde la humedad promedio es de 2.37%, y el peso unitario es de 1676 kg. / cm³. La investigación concluye que, de acuerdo con el diseño del pavimento de concreto con adición de fibras de acero, mejora encomparación con su grupo control

Marín (2020), en la tesis titulada. Evaluación de las propiedades físico mecánicas del adoquín 6 tipo II, reemplazando el agregado fino por caucho reciclado, Cusco 2019. Su objetivo fue evaluar los parámetros mecánicos y mecánicos de una pavimentadora de sexto tipo, reemplazando agregado fino por caucho reciclado, Cusco 2019. La investigación concluye que el F´c de los ensambles deslizantes tanto patrón y con (3, 6 y 9) % de caucho demuestra concordancia con la hipótesis de la NTP 399611. Para pisos de caucho, el grupo que mejores resultados dio fue el grupo 3% caucho con un promedio de 529,27 kg/cm 2 y la resistencia a la flexión de los pisos obtuvo resultados positivos al referirse a los valores diseñados en la RTN 41086, dentro de las dimensiones que soportan una variación dimensional.

2.2. BASES TEÓRICAS

2.2.1. ACERO

Según Wu, et al., (2016) manifiesta que el aumento del contenido de fibra de acero y las fibras deformadas mejoran significativamente la resistencia a la compresión y a la flexión del concreto de alto rendimiento, con un 3% de fibras corrugadas aumentando la resistencia a la compresión en un 48% y un 59%.

Para Serin Ahmeti, et al., (2022). indican que las fibras de acero en

los diseños de mezclas de concreto mejoran la ductilidad y los niveles de carga en el rango posterior al agrietamiento, lo que las convierte en una alternativa prometedora para los elementos estructurales.

Según Abbas, et al., (2018) la adición de fibras de acero en el hormigón aumenta la resistencia a la compresión en un 10-25% y la resistencia a la tracción directa en un 31-47%, con un aumento de la resistencia a la flexión del 3% al 124%.

2.2.1.1. ACERO EN PERÚ

Donde nos menciona Dutscher (1981), En la construcción con una definición de acero. Esto es muy necesario porque con el tiempo, los conceptos de la propiedad identificativa de este material de construcción han cambiado. Anteriormente, la propiedad principal del acero era su capacidad para ser particularmente templado; esta propiedad ya no está dentro de la definición de crucifixión; En el presente caso técnico, la materianegra conformada en caliente se acepta como acero. Excepto por unos pocos moles de acero ricos en cromo, el acero contiene menos del 1,9 % de C, que no es mineral de hierro. Esta es la definición del estándar EURO20-60. Pero recientemente, se encontró que el punto de fusión En del diagrama de caso de carbono férrico corresponde a 2% C, y hoy podemosdar 2% C como límite en la definición de acero. El término "sustancia negra"en la definición se refiere a aleaciones metálicas en las que el contenido dehierro en peso es mayor que el de cualquier otro componente.

Donde nos menciona Dutscher (1981), Además de la propiedad básica del conformado en caliente, el contenido de carbono es fundamental para la identificación del acero. Por lo tanto, este contenido de carbono es una parte esencial del acero, que en última instancia no es más que una aleación de hierro y carbono generadora de calor. Por eso es incorrecto hablar de acero al carbono. Todos los aceros, además del carbono, contienen otros

elementos que en parte se deben al proceso de fabricacióno han sido añadidos a propósito. Los elementos producidos por el proceso,también conocidos como elementos secundarios, son el silicio y el magnesio, así como el fósforo, el azufre, el oxígeno, el cobre, el níquel, etc.,que casi siempre provienen de la chatarra recolectada.

2.2.1.2. CLASIFICACIÓN DE LOS ACEROS

Donde nos menciona Dutscher (1981), Según la EUROnorma 20-60 seclasifican los aceros por su composición química y por su aplicación.

2.2.1.3. EN LA CLASIFICACIÓN DE LOS ACEROS POR SU COMPOSICIÓN QUÍMICA RESULTA TRES GRUPOS

- 1. Aceros sin alear
- 2. Aceros semialeados
- Aceros aleados

2.2.1.4. MATERIALES METÁLICOS EMPLEADOS EN LA CONSTRUCCIÓN

Como nos menciona López (2006), Como material estructural principal, se utiliza acero al carbono dulce en todas sus calidades. Sin embargo, en algunas aplicaciones específicas como la construcción de calderas o estructuras especiales, se utilizan otros tipos de aceros, como aceros aleados con cromo y níquel, aleaciones no ferrosas como aluminio, titanio, etc. En construcciones metálicas, el acero más utilizado es el grado S275, especificado en la especificación CTE-SE-A y en la directiva EAE, aunqueno se descarta el uso de los aceros S235 y S355.

Las normas españolas vigentes que describen las propiedades y características de los aceros utilizados en la construcción y sus denominaciones son la UNE EN 10025 Junto

con el CTE-se-ha mencionado anteriormente, estos requisitos deben ser respetados.

2.2.1.5. CARACTERÍSTICAS DE LOS ACEROS

Según López (2006) a nivel Normativa. - Se aplicará la parte 4 del CTE-SE-A o la norma correspondiente, UNE EN 10025, a los elementos y paneles laminados utilizados en las estructuras de edificación. Acero utilizado para barras y placas para aplicaciones que requieren alta soldabilidad o insensibles a la fractura frágil. Los aceros S355JR se utilizandonde se requiere alta resistencia y los grados de acero S355J0, S355J2 y S355J donde también se requiere alta soldabilidad o sensibilidad a la fractura frágil.

Según López (2006) en composición química. – Los límites de contenido de C, PS y N₂ para lavados y productos obtenidos de análisis sedeterminaron según los procedimientos establecidos por las siguientes normas UNE: 7014, 7331, 7349 para carbón, 7029 para fósforo, 7019 paraazufre, 36317-1 para nitrógeno, 7028 para silicio y 7027 para manganeso.

En la tabla siguiente se reconocen las exigencias respecto a los límites establecidos en la composición química de los aceros laminados en caliente.

Según López (2006) fabricación del acero. – El acero puede fabricarse mediante cualquiera de los procesos tradicionales: transformadores, soplado, Martin Siemens, hornos eléctricos. A petición del consumidor, el fabricante indicará el procedimiento de uso. Los productos laminados, si elconsumidor no los encargó con antelación, se entregarán sin más trámite. Según López (2006) clases del acero. – El acero ordinario es el de la claseS275JR. Los aceros de los grados J0, J2, K2 se utilizan cuando se exige alta soldabilidad o insensibilidad a la rotura frágil. Los aceros del tipo S355se utilizan cuando se requieren altas resistencias.

Tabla 1
Clases de acero

	CLASES DE ACERO			
		GRAD	0	_
TIPO				
	JR	J0	J2	K2
S235	S235JR	S235J0	S235J2	-
S275	S275JR	S275J0	S275J2	-
S355	S355JR	S355J0	S355J2	S235K2

Nota. Clases de acero según su grado. López ,2006, pág. 213.

2.2.2. CAUCHO

Como nos menciona Fuentes (2014), El caucho es un polímero flexible de hidrocarburo, cis-1,4-poliisopreno, isopreno O₂metilbutadieno. C₅H₈ se extrae de una emulsión blanca opaca (llamada látex) que se produce enla savia de varias plantas, pero también se puede producir sintéticamente.La principal fuente comercial de látex es un árbol conocido científicamentecomo Hevea brasiliensis. Otras plantas que contienen látex son el ficus euphorkingdom heartbias y el diente de león vulgar. El caucho se obtiene de otras especies como Urceola Elastomer de Asia y Funtamia Elastomer de África Occidental. También se obtiene del látex de Castilla thuna, Kalule patenium argentatum y Guttaperca palaquium gutta.

2.2.2.1. CAUCHO SINTÉTICO RECICLADO

Como nos menciona BRUNSSEN (2011), citado en Martín (2015), El caucho sintético es cualquier producto hecho por el hombre, generalmenteun producto de petróleo refinado, que tiene propiedades similares al caucho. En otras palabras, puede deformarse elásticamente mucho más que otros materiales y, en cualquier caso, puede volver a su forma originalsin deformación permanente.

El material consiste en la polimerizar gran cantidad de monómeros, incluidos isopreno e isobutileno. Al agregar aditivos controlados, se pueden cambiar varias propiedades físicas, mecánicas y químicas. ya en 1860, comenzó el estudio de las propiedades del caucho para la fabricación de síntesis (Fuentes 2014).

Existen estudios sobre el uso de caucho reciclado en la industria de la construcción:

Según Abdelmonem, et al., (2019) menciona que el caucho reciclado reemplaza parcialmente el agregado fino en el concreto de alta resistencia pudiendo reducir la resistencia hasta en un 50%, mejorar la trabajabilidad y aumentar la resistencia al impacto.

El caucho reciclado de los neumáticos en los pavimentos de asfalto puede mejorar el rendimiento, la economía y la sostenibilidad, al tiempo que reduce la deformación permanente y mejora la resistencia a los surcos y los daños por fatiga (Alfayez, et al., 2020).

Para Issa, y Salem, (2013) el caucho granulado reciclado de los neumáticos puede ser un sustituto aceptable de los agregados finos en las mezclas de concreto, logrando una resistencia a la compresión aceptable con hasta un 25% por reemplazo de volumen de arena triturada.

El caucho presenta en su estructura química elementos químicos como:

- **Neopreno**; Uno de los primeros elastómeros obtenidos de Carothers Research es el neopreno, un polímero de monocloropreno, conla fórmula CH₃-C(CI)CH-CH₃. El neopreno es fuerte al calor y a materiales químicos como el aceite y el petróleo. Se utiliza en oleoductos y como aislantes.
- Caucho isobutileno-isopreno: Es plástico y se puede procesar como caucho tradicional, pero es difícil de vulcanizar. No es muy flexible como el caucho natural y otros sintéticos, es fuerte a la oxidación ya los efectoscorrosivos del producto.

- Poliisopreno sintético: Es un polímero diénico, es decir, un polímero formado por un monómero con dos dobles enlaces carbono-carbono. Elpoliisopreno sintético se obtiene mediante el proceso de radicales libres utilizando un catalizador y un mecanismo de polimerización conocido como Ziegler-Natta.
- Butadieno estireno: Son los plásticos sintéticos más importantes, y son un copolímero de butadieno (75%) y estireno (25%) adquirido por radicales libres; Compite con el caucho en el uso de más elastómeros, es decir, en la producción de neumáticos para automóviles.
- **Polibutadieno:** El polibutadieno es un caucho sintético, que es un polímero que consiste en la polimerización del monómero 1,3-butadieno. Tiene una alta resistencia al desgaste y se utiliza principalmente en la fabricación de neumáticos, donde se consume alrededor del 70% del polibutadieno producido. Otro 25% se utiliza como aditivo para mejorar la resistencia mecánica de plásticos como el poliestireno y el acrilonitrilo-butadieno-estireno.

2.2.2. ADOQUÍN

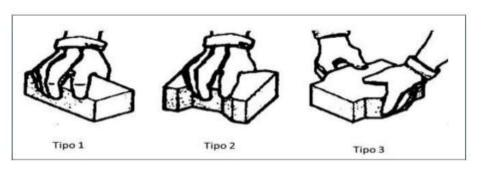
Nos menciona pavimentos y otros elementos urbanos prefabricados de hormigón, (2019), Los adoquines son bloques de hormigón prefabricado, generalmente de dos capas, y pueden tener una variedad de tamaños y formas. La definición estándar europea para pavimentación significa que cualquier área transversal a una distancia de 50 mm desde cualquier borde de pavimentación debe tener una dimensión horizontal de menos de 50 mm. Asimismo, el largo total dividida por su espesor será ≤ 4.

2.2.2.2. TIPO DE ADOQUINES

Como nos menciona Rojas (2014),

 TIPO I: Los adoquines rectangulares son los más prácticos y demandados por su facilidad de fabricación e instalación, asícomo por su versatilidad de colocación, pudiendo instalarse en espiga, hormigonados, cestería, etc. Para el tránsito vehicular, solo debe usarse en forma de zigzag o en filas diagonales en la dirección del tránsito.

- TIPO II: Son cortadores en que no se pueden colocar en un patrón de zigzag, sino que solo se ubican en filas entrelazadas y se cruzan con la dirección del tráfico vehicular.
- TIPO III: Debido a su peso y tamaño, solo se puede forrar y debe cortarse horizontalmente en la dirección de movimiento del vehículo.


Tabla 2 *Tipo de adoquín*

TIPO	USO			
I	Adoquines de uso peatonal			
II	Adoquines de tránsito vehicular ligero			
III	Adoquines de tránsito vehicular pesado,			
	patios industriales y de contenedores			

Nota. Se detalla el tipo de adoquín. CE.010, p. 13.

Figura 1

Tipo de adoquín

Nota. Se muestra las formas del adoquín. Rojas, 2014, p. 109.

2.2.2.3. REQUISITOS MÍNIMOS DEL ADOQUÍN

Tabla 3 F´c y espesor del adoquín

		Resistencia a la compr	esión, min.	
	Espesor nominal	MPa(kg/cm2)		
tipo	(mm)	Promedio de		
upo	()	3	Unidad	
		unidades	individual	
I (Doctoral)	40	31 (320)	28 (290)	
I (Peatonal)	60	31 (320)	28 (290)	
II (\/ohigular ligara)	60	41 (420)	37 (380)	
II (Vehicular ligero)	80	37 (380)	33 (340)	
	100	35(360)	32(325)	
III (Vehicular pesado,	≥80	55 (561)	50 (510)	
patios industriales o de contenedores)				

Nota. Se muestra los valores según el adoquín. NTP 399.611, 2019, p. 11.

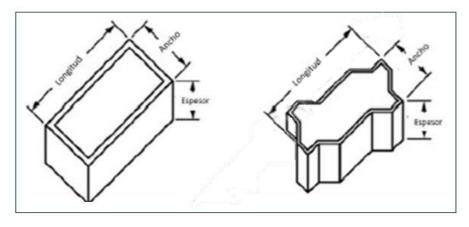

2.2.2.4. TOLERANCIA DIMENSIONAL DEL ADOQUÍN:

Tabla 4 *Variación dimensional*

Tolerancia dimensional, max. (mm)				
Longitud	Ancho	Espeso		
		r		
±1.6	±1.6	±3.2		

Nota. En la siguiente tabla se muestra la variación dimensional. NTP 399.611, 2019, p. 11.

Figura 2
Tolerancia de adoquines

Nota. Se detalla la variación dimensional. NTP 399.611, 2019, p. 12.

2.2.2.5. RESISTENCIA A LA COMPRENSIÓN

Según Osorio (2022), manifiesta que la característica mecánica principal del concreto es su resistencia a la compresión simple y esta es la capacidad que tiene el concreto para soportar una carga por unidad de área y está definida en términos de esfuerzo, que generalmente se expresan en kg/cm², MPa y, ocasionalmente, en libras por pulgada cuadrada (psi).

La norma técnica peruana NTP 339.034 2015, las que rigen los procedimientos de elaboración de los cilindros y ensayo; resumiéndose en y NTP 339.214

La NTP 339.034 2015 son métodos de ensayos usados para determinar para determinar la resistencia a la compresión de especímenes cilíndricos preparados y curados de conformidad con las NTP 339.033, NTP 339.183, NTP 339.037 y NTP 339.216 y los métodos de ensayo de las NTP 339.059 (INACAL, 2015)

2.3. DEFINICIONES CONCEPTUALES

- FIBRAS DE ACERO. Son fibras compuestas bien de metales, aleaciones metálicas, metal recubierto de plástico, plástico recubierto de metal, o un núcleo completamente cubierto por meta, las fibras de acero unen la grieta en aberturas de grieta muy pequeñas, transfieren tensiones y desarrollan resistencia posterior a la grieta en el concreto. (Larsen, y Thorstensen, 2020).
- CAUCHO RECICLADO. El caucho es ampliamente utilizado en la fabricación de neumáticos, artículos impermeables y aislantes, por sus excelentes propiedades de elasticidad y resistencia ante los ácidos y las sustancias alcalinas. El reciclado implica la desvulcanización, que consiste en romper los enlaces cruzados que le dan al caucho su elasticidad. (Myhre, 2012)
- RESISTENCIA A LA COMPRENSIÓN. Característica mecánica principal del concreto. Se define como la capacidad para soportar una carga por

unidad de área, y se expresa en términos de esfuerzo, generalmente en kg/cm2, MPa y con alguna frecuencia en libras por pulgada cuadrada (psi). (Lee, 2016)

- PET. Politereftalato de Etileno, Materiales que sean física y químicamente duraderos, aislantes, livianos y reciclables. Se utiliza principalmente para refrescos, botellas de agua y aceite y envases de alimentos. El PET reciclado se puede utilizar para madera plástica, fibras textiles, hilos y autopartes, y se puede reciclar fácilmente en nuevos envases para alimentos (Paz, 2016, pág. 40).
- POLIBUTADIENO. Billmeyer (1975), nos menciona que Este polímero ha sido producido según una política de feria o grupo, con el mismo proceso que el poliisopreno CIS-14 y tiene las mismas y muy diferentes propiedades (pág. 402).
- CONCRETO ECOLÓGICO. Ref. Cemex, Puerto Rico, (2010) citado en Aquino (2015), También se le conoce como hormigón permeable u hormigón poroso. El hormigón ecológico es un tipo especial de hormigón cuya principal propiedad es tener un alto porcentaje de porosidad en su estructura, lo que lo hace permeable, y esta porosidad permite que el agua se filtre a través de su superficie (cemento, árido grueso, aditivos, agua) y para proporcionar almacenamiento temporal para su eliminación posterior o colarse en el suelo (pág. 12).
- CEMENTO. E.060 (2009), nos menciona que el Material pulverizado que por adición de una cantidad conveniente de agua forma una pasta aglomerante capaz de endurecer, tanto bajo el agua como en el aire. Quedan excluidas las cales hidráulicas, las cales aéreas y los yesos (pág. 12).
- CONCRETO. E.060 (2009), nos menciona que la Mezcla de cemento Portland o cualquier otro cemento hidráulico, agregado fino, agregado grueso y agua, con o sin aditivos (pág. 13).
- AGREGADO FINO. E.060 (2009), Agregado proveniente de la desintegración natural o artificial, que pasa el tamiz 9,5 mm (3/8")(pág. 12).

2.4. HIPÓTESIS

2.4.1. HIPÓTESIS GENERAL

H₀: Los adoquines elaborados con fibras de acero más caucho reciclado no influyen en la resistencia a la comprensión en la ciudad de Huánuco – 2022.

 H_a : Los adoquines elaborados con fibras de acero más caucho reciclado si influyen en la resistencia a la comprensión en la ciudad de Huánuco – 2022.

2.4.2. HIPÓTESIS ESPECIFICA

- Ho: Los adoquines elaborados con fibra de acero más caucho al 15% no influyen en la resistencia a la comprensión en la ciudad de Huánuco – 2022
- Ha: Los adoquines elaborados con fibra de acero más caucho al 15% si influyen en la resistencia a la comprensión en la ciudad de Huánuco – 2022
- Ho: Los adoquines elaborados con fibra de acero más caucho al 25% no influyen en la resistencia a la comprensión en la ciudad de Huánuco – 2022
- Ha: Los adoquines elaborados con fibra de acero más caucho al 25% si influyen en la resistencia a la comprensión en la ciudad de Huánuco – 2022
- Ho: Los adoquines elaborados con fibra de acero más caucho al 35% no influyen en la resistencia a la comprensión en la ciudad de Huánuco – 2022.
- H_a: Los adoquines elaborados con fibra de acero más caucho al 35% si influyen en la resistencia a la comprensión en la ciudad de Huánuco – 2022.

2.5. VARIABLES

2.5.1. VARIABLE DEPENDIENTE

Resistencia a la compresión del adoquín.

2.5.2. VARIABLE INDEPENDIENTE

Fibras de acero y de caucho reciclado.

2.6. OPERACIONALIZACIÓN DE VARIABLES

VARIABLE	DEFINICION CONCEPTUAL	DEFINICION OPERACIONAL	DIMENSIONES	INDICADORES	UNIDAD DE MEDIDA	INSTRUMENTOS DE INVESTIGACION
Fibras de acero y caucho reciclado	siempre que las fibras	recolectadas de los talleres mecánicos donde prestan el servicio de tornillo de banco como es torno y cepilladora de fierro dulce, El caucho sintético se obtendrá de las llantas recicladas, luego adaptadas a la metodología del proyecto	 Proporción Longitud de las fibras Distribución de la Mezcla Proporción Tamaño de partículas Distribución de la Mezcla 	 Proporción de Fibras en % Longitud promedio de las fibras en (mm) Uniformidad de distribución 	(mm) (Diámetro)	NTP 339.033 NTP 339.033 NTP 339.037 NTP 339.216 y los métodos de ensayo de las NTP 339.059
Dependiente			Diseño de mezcla			

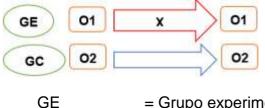
Resistencia a la comprensión del Adoquín	Según Osorio (2022), manifiesta que la característica mecánica principal del concreto es su resistencia a la compresión simple y esta es la capacidad que tiene el concreto para soportar una carga por unidad de área y está definida en términos de esfuerzo, que generalmente se expresan en kg/cm2, MPa y, ocasionalmente, en libras por pulgada cuadrada (psi).	Elaboración del concreto bajo la norma técnica peruana NTP 339.034 2015		0% 15% 25% 35%	Kg/cm²	Prensa Hidráulica
--	--	--	--	-------------------------	--------	-------------------

CAPITULO III

METODOLOGIA DE LA INVESTIGACIÓN

3.1. TIPO DE INVESTIGACIÓN

3.1.1. ENFOQUE


El enfoque del estudio fue cuantitativo, porque se caracterizó por la predicciones e interpretaciones de los hechos observados, así mismo por que se recolecto datos para probar una hipótesis basado en la numeración numérica y el análisis estadístico Hernández et al., (2010).

3.1.2. ALCANCE O NIVEL

En nivel de investigación fue explicativo por que se estudió un problema a través de la relación de dos variables las cuales se encargaron de responder las causas de los eventos o fenómeno (Muñoz, 2015), el nivel explicativo, busca comprender las relaciones de causa y efecto entre variables. Su objetivo principal es explicar por qué ocurre un fenómeno y cuáles son los factores que lo influyen.

3.1.3. **DISEÑO**

El presente trabajo de investigación tuvo un diseño cuasi experimental porque se manipulo la variable independiente (X) y la recolección de datos fueron en el mismo tiempo y espacio para la variable de estudio (Y) Hernández et al., (2010), el diseño cuasi experimental es la agrupación de las muestras tomadas, y adecuadas en función de grupos de control y experimento (p. 148).

= Grupo experimental

GC = Grupo control

O1 y O2 = Pre prueba X = Tratamiento
O3 y O4 = Pos prueba

3.2. POBLACIÓN Y MUESTRA

3.2.1. POBLACIÓN

Se considera población a la totalidad del fenómeno a estudiar, donde las entidades de la población poseen una característica común la cual se estudia y da origen a los datos de la investigación (Hernández, 2010, (p.65).

En la investigación la población fue finita y estuvo compuesta por un total de 120 adoquines; 30 adoquines para cada tratamiento (0%, 15%, 25%, 35%), el criterio de la cantidad de la unidad elemental, para cada tratamiento fue para reducir el sesgo y tener valores porcentuales óptimos del coeficiente de variación (CV).

3.2.2. MUESTRA

Muestra en un subgrupo de la población, Es un subconjunto de elementos que pertenecen a ese conjunto definido en sus características al que se le llama población (H. Sampieri, citado por Balestrini 2001 Pág. 141)

El muestreo fue no probabilístico por conveniencia porque se decidió fabricar la cantidad exacta de adoquines para cada tratamiento (30) la decisión fue subjetiva propia del investigador basados en los criterios de investigaciones con diseños experimentales, considerando el nivel de confianza y nivel de significancia, para evitar el sesgo.

Así mismo porque se obtuvo resultados de forma consecutiva a los 7, 14 y 28 días de evaluación, de forma independiente.

La cantidad de muestras se detallaen la tabla siguiente.

Tabla 5Cantidad de muestras a realizar

ADOQUINES	CANTIDAD (UND)
Adoquín patrón	30
Adoquín con 15% de fibras de acero + caucho reciclado	30
Adoquín con 25% de fibras de acero + caucho reciclado.	30
Adoquín con 35% de fibras de acero + caucho reciclado	30
TOTAL, DE MUESTRAS	120

Nota. Cantidad de muestras.

3.3. TÉCNICAS E INSTRUMENTOS DE RECOLECCIÓN DE DATOS

3.3.1. TÉCNICA

Para el estudio se usó la observación directa, por que consistió en registrar sistemáticamente, validar y confiar el comportamiento de la variable dependiente siendo estas específicas y definidas antes de comenzar la investigación (Hernández 2006, p. 374)

En el contexto de una investigación se refiere al proceso de recopilación de datos mediante la visualización y registro directo de eventos, comportamientos, actividades o fenómenos relevantes en el entorno de estudio. Este método implico la presencia física del investigador en el lugar donde ocurren los eventos para observarlos de manera directa y sistemática.

3.3.2. INSTRUMENTOS

FICHAS DE EVALUACIÓN Y OBSERVACIÓN: Los métodos de recolección deben ser confiables y adecuado a las variables de análisis. (Hernández et al., 2006, p. 252). Las fichas usadas fueron:

- Ficha de diseño de mezcla
- Fichas para rotura.

Las fichas de recolección de datos son formatos que pertenecieron a la empresa **EHEC S.C.R.L.** el cual se adjunta en los anexos, así mismo las fichas solo fueron para adjuntar los datos de los instrumentos de medición en este caso la prensa hidráulica quien para su instalación y

calibración se basó en la ISSO 4413, de sistemas hidráulicos de maquinas

3.4. TÉCNICAS PARA EL PROCESAMIENTO Y ANÁLISIS DE LA INFORMACIÓN

Para el procesamiento de nuestros datos se utilizó el programa IBM SPSS STATIC, versión 27, con el cual se realizó el análisis de la estadística descriptiva, la prueba de normalidad y la comparación de media de los tratamientos.

3.4.1. TÉCNICAS DE PROCESAMIENTO

Para saber si los datos de la muestra cumplen con el supuesto de normalidad se utilizó la prueba de normalidad y se interpretó los valores del test de Shapiro Will por tener datos menores a 30, para hacer la comparación se realizó mediante el test de T de Student debido a que los datos de los tratamientos fueron menores de 30 y eran muestras independientes, para la comparación de medias del global de las muestras se utilizó el análisis de varianza, que cumplieron el supuesto de normalidad ANOVA

Así mismo se realizó la interpretación y análisis de la estadística descriptiva analizando la media, los valores máximos y mínimos, la varianza, la desviación estándar y el coeficiente de variación. En el contexto de una investigación, la estadística descriptiva es esencial para proporcionar un resumen conciso y comprensible de los datos recolectados

3.4.2. ANÁLISIS DE LA INFORMACIÓN

Para nuestros datos cuantitativos, se utilizó técnicas estadísticas variadas para realizar las pruebas de hipótesis, análisis de varianza, y medidas de tendencia central y dispersión. Estos métodos ayudan a extraerinformación cuantitativa significativa, donde para esto se apoyó con el Excely SPSS.

CAPITULO IV

RESULTADOS

4.1. DE LA DETERMINACIÓN DE LA RESISTENCIA A LA COMPRENSIÓN DE LOS ADOQUINES ELABORADOS CON FIBRAS DE ACERO MÁS CAUCHO

Tabla 6Media de la resistencia a la comprensión de los tratamientos (F'c) los tratamientos

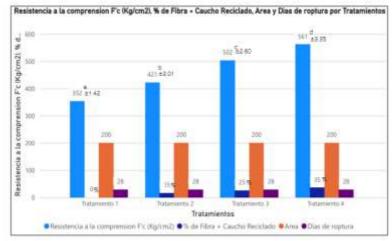
Tratamientos	% de fibra + Caucho	Edad	Área	F'c*
Tratamiento 1	0	28	200	352.356
Tratamiento 2	15	28	200	421.391
Tratamiento 3	25	28	200	502.405
Tratamiento 4	35	28	200	561.434

Nota. La tabla muestra: T₁; Testigo, T₂; adoquines con fibras de acero más caucho reciclado al 15%, T₃; adoquines con fibras de acero más caucho reciclado al 25%, T₄; adoquines con fibras de acero más caucho reciclado al 35%, *F'c; Resistencia a la comprensió*n*

Los resultados de la tabla 6 muestran los valores de la media de los tratamientos siendo la media para T_1 ; 352.356 Kg/cm², T_2 ; 421.391 Kg/cm², T_3 ; 502.405 Kg/cm² y para T_4 ; 561.434 Kg/cm².

4.1.1. DE LA COMPARACIÓN DE MEDIA DE LOS TRATAMIENTOS

Tabla 7Comparación de media de los tratamientos de la variable resistencia a la comprensión (F'c Kg/Cm2)


Tratamientos	% de fibra + Caucho	Edad	Área	F'c
Tratamiento 1	0	28	200	352.356a
Tratamiento 2	15	28	200	421.391 ^b
Tratamiento 3	25	28	200	502.405°
Tratamiento 4	35	28	200	561.434 ^d
P - Valor				<0.0001

Nota. La tabla muestra: muestra la diferencia estadística significativa que existe entre los tratamientos para la variable resistencia a la comprensión (F'c Kg/cm²). Letras distintas muestran diferencia estadística significativa (ANOVA) p valor < 0.05.

Los resultados de la tabla 7 muestran la diferencia estadística significativa que existe entre los tratamientos (p < 0.05) observándose que el tratamiento con la incorporación de 35% de fibra de acero más caucho muestra una mayor resistencia a la compresión a los 28 días con un valor de 561.434 Kg/cm².

4.1.2. DE LA COMPARACIÓN DE MEDIAS DE LAS VARIABLES DE ESTUDIO EN LOS TRATAMIENTOS

Figura 3
Valores de las variables de estudio

Nota. La figura 3 muestra los tratamientos y las variables de estudio del proyecto de investigación, letras distintas muestran diferencia estadística significativa p< 0.05 entre los tratamientos

La figura 3 muestra la media de los tratamientos de cada variable de estudio y la diferencia estadística significativa que existe entre ellos con los siguientes valores T_1 (0%); 352.356 kg/cm², T_2 (15%); 421.391 kg/cm², T_3 (25%); 502.405 kg/cm² y T_4 (35%); 561.434 kg/cm².

4.2. DE LA DETERMINACIÓN DE LA RESISTENCIA A LA COMPRENSIÓN DE LOS ADOQUINES HECHOS CON UN 15, 25 Y 35% DE FIBRAS DE ACERO MÁS CAUCHO RECICLADO

Figura 4

Determinación de la resistencia a la comprensión de los adoquines a los 28 días de evaluación

Nota. La figura muestra el promedio de los valores de los tratamientos a los 28 días de evaluación

La figura 4, muestra la diferencia estadística significativa que existe entre los tratamientos p<0.05, cuyos valores reportan que el T₄, reporta el mayor valor de resistencia a la comprensión con 561.434 Kg/cm², cuyo porcentaje de fibra de acero más caucho fue de 35%.

4.3. DEL PROCESAMIENTO DE DATOS

Tabla 8 f'c de adoquín patrón a 28 días

N°	MUESTRA	% DE FIBRAS DE ACERO MÁS	EDAD	ÁREA	F ⁻ C
		CAUCHO			
		RECICLADO			
1	PATRON	0	28	200.00	350.26
2	PATRON	0	28	200.00	352.35
3	PATRON	0	28	200.00	353.62
4	PATRON	0	28	200.00	351.85
5	PATRON	0	28	200.00	355.21
6	PATRON	0	28	200.00	352.46
7	PATRON	0	28	200.00	353.18
8	PATRON	0	28	200.00	351.24
9	PATRON	0	28	200.00	350.98
10	PATRON	0	28	200.00	352.41

Nota. La tabla muestra los valores de la Resistencia a la comprensión de las muestras (Repeticiones) T1 (0%) a los 28 días de evaluación


Tabla 9Valores estadísticos de la F´c del adoquín patrón

Válido N	10
Perdidos	0
Media	352,3560
Desviación estándar	1,423

Nota. La tabla muestra los valores de la media y de la desviación estándar del Tratamiento patrón o testigo (T1). Interpretación

Se ve los resultados del F'c del grupo patrón, donde la media es 352.3560 kgf/cm², que servirá para realizar la comparativa con los resultados de los otros grupos ensayados; así mismo la desviación estándar es de 1.423kgf/cm², que detalla que la variación de los datos es mínima y que puede estar por debajo o por encima con respecto a la media.

Figura 5 *F'c de los adoquines patrón*

Nota. La figura presenta los resultados del F´c en las 10 muestras obtenidas en laboratorio, y también se muestra la línea del promedio con respecto a los resultados. .

Interpretación

De la figura se aprecia que la máxima resistencia obtenida de los adoquines patrón es 355.21 Kg/cm² y que la mínima resistencia obtenida es 350.26 Kg/cm².

Tabla 10F´c de los adoquines con fibras de acero más caucho reciclado al 15% a 28 días.

N° MUESTRA	% DE FIBRAS DE ACERO	EDAD	ÁREA	F [*] C
	MÁS CAUCHO RECICLADO			
1	15	28	200.00	417.24
2	15	28	200.00	421.63
3	15	28	200.00	418.82
4	15	28	200.00	422.31
5	15	28	200.00	424.94
6	15	28	200.00	423.91
7	15	28	200.00	417.73
8	15	28	200.00	423.85
9	15	28	200.00	418.72
10	15	28	200.00	424.76

Nota. La tabla muestra los valores de la Resistencia a la comprensión de las muestras (Repeticiones) T2 (15%) a los 28 días de evaluación

Tabla 11
Valores de los F´c del adoquín con fibras de acero más caucho reciclado al 15%

Válido N	10
Perdidos	0
Media	417,3910
Desviación estándar	3,011

Nota. La tabla muestra los valores de la media y de la desviación estándar del Tratamiento patrón o testigo (T2). Fuente: Programa SPSS

Interpretación

Se ve los resultados del F'c del grupo con fibras de acero más caucho reciclado al 15%, donde la media es 417.3910 kgf/cm2, que servirá para realizar la comparativa con los resultados del grupo patrón; así mismo la desviación estándar es de 3.011kgf/cm2 que detalla que la variación de los datos mínima y que puede estar por debajo o por encima con respecto a la media.

Figura 6

F'c del adoquín con fibras de acero más caucho reciclado al 15%

Nota. La figura presenta los resultados del F´c en las 10 muestras obtenidas en laboratorio, y también se muestra la línea del promedio con respecto a los resultados. .

Interpretación

De la figura se aprecia que la máxima resistencia obtenida de los adoquines con fibras de acero más caucho al 15% es 424.94 Kg/cm2 y que la mínima resistencia obtenida es 417.24 Kg/cm².

Tabla 12F´c de los adoquines con fibras de acero más caucho reciclado al 25% a 28 días.

N° MUESTRA	% DE FIBRAS DE ACERO	EDAD	ÁREA	F ⁻ C
	MÁS CAUCHO RECICLADO			
1	25	28	200.00	501.35
2	25	28	200.00	497.79
3	25	28	200.00	503.93
4	25	28	200.00	505.38
5	25	28	200.00	503.56
6	25	28	200.00	501.69
7	25	28	200.00	498.37
8	25	28	200.00	503.19
9	25	28	200.00	504.99
10	25	28	200.00	503.80

Nota. La tabla muestra los valores de la Resistencia a la comprensión de las muestras (Repeticiones) T3 (25%) a los 28 días de evaluación

Tabla 13

Valores de los F´c del adoquín con fibras de acero más caucho reciclado al 25%

Válido N	10
Perdidos	0
Media	502,4050
Desviación estándar	2,603

Nota. La tabla muestra los valores de la media y de la desviación estándar del Tratamiento patrón o testigo (T3).

Interpretación

Se ve los resultados del F'c del grupo con fibras de acero más caucho reciclado al 25%, donde la media es 502.4050 kgf/cm², que servirá para realizar la comparativa con los resultados del grupo patrón; así mismo la desviación estándar es de 2.603kgf/cm² que detalla que la variación de los datos mínima y que puede estar por debajo o por encima con respecto a la media.

Figura 7

F'c del adoquín con fibras de acero más caucho reciclado al 25%

Nota. La figura presenta los resultados del F´c en las 10 muestras obtenidas en laboratorio, y también se muestra la línea del promedio con respecto a los resultados. .

Interpretación

De la figura se aprecia que la máxima resistencia obtenida de los adoquines con fibras de acero más caucho al 25% es 505.38 Kg/cm² y que la mínima resistencia obtenida es 497.79 Kg/cm².

Tabla 14F´c de los adoquines con fibras de acero más caucho reciclado al 35% a 28 días.

N° MUESTR A	% DE FIBRAS DE ACEROMÁS CAUCHO RECICLADO	ED AD	ÁREA	F"C
1	35	28	200.00	558.14
2	35	28	200.00	560.61
3	35	28	200.00	563.50
4	35	28	200.00	560.04
5	35	28	200.00	564.14
6	35	28	200.00	559.76
7	35	28	200.00	564.45
8	35	28	200.00	562.76
9	35	28	200.00	554.98
10	35	28	200.00	565.96

Nota. La tabla muestra los valores de la Resistencia a la comprensión de las muestras (Repeticiones) T4 (35%) a los 28 días de evaluación.

Tabla 15
Valores de los F´c del adoquín con fibras de acero más caucho reciclado al 35%

Válido N	10
Perdidos	0
Media	561,4340
Desviación estándar	3,348

Nota. La tabla muestra los valores de la media y de la desviación estándar del Tratamiento patrón o testigo (T4).

Interpretación

Se los resultados del F'c del grupo con fibras de acero más caucho reciclado al 35%, donde la media es 561.4340 kgf/cm2, que servirá para realizar la comparativa con los resultados del grupo patrón; así mismo la desviación estándar es de 3.348kgf/cm2 que detalla que la variación de los datos mínimay que puede estar por debajo o por encima con respecto a la media.

Figura 8

F'c del adoquín con fibras de acero más caucho reciclado al 35%

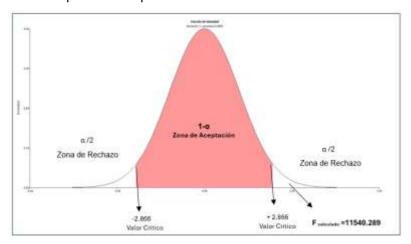
Nota. La figura presenta los resultados del F´c en las 10 muestras obtenidas en laboratorio, y también se muestra la línea del promedio con respecto a los resultados. .

Interpretación

De la figura se aprecia que la máxima resistencia obtenida de los adoquines con fibras de acero más caucho al 35% es 565.96 Kg/cm2 y que la mínima resistencia obtenida es 554.98 Kg/cm².

4.4. DE LA CONTRASTACIÓN Y PRUEBA DE HIPÓTESIS

El presente trabajo de investigación se realizó con un nivel de significancia de 5% (0.05) y con un nivel de confianza del 95% (0.95) lo que sirvió para realizar la contrastación de las hipótesis planteadas, para el procesamiento de datos se utilizó funciones de análisis Excel y el software IBM SPSS Statistics 27.0.1, para la comparación de medias de los tratamientos se utilizó el ANOVA de un factor previa prueba de normalidad de los datos de la muestra de las variables de estudio y para la comparación de las muestras emparejadas la prueba de t de Student, porque cumplen los supuestos de normalidad (Shapiro Will) > 0.05, también por que los datos son ≤50 en la muestra de cada tratamiento.


4.4.1. PLANTEAMIENTO DE LA HIPÓTESIS GENERAL

H₀: Los adoquines elaborados con fibras de acero más caucho reciclado no influyen en la resistencia a la comprensión de los adoquines en la ciudad deHuánuco – 2022.

H_a: Los adoquines elaborados con fibras de acero más caucho reciclado si influyen en la resistencia a la comprensión de los adoquines en la ciudad de Huánuco – 2022.

4.4.2. PRUEBA DE HIPÓTESIS

Figura 9
Resultados de la prueba de hipótesis de la variable de estudio

Nota. La figura 9 muestra la prueba de la hipótesis general en la campana de Gauss.,

con un nivel de significancia del 5% cuyo valor critico es ± 2.866 y el valor del $F_{Calculado}=11540.289$, Análisis de varianzas (ANOVA), prueba Tuckey y Duncan, cuyo valor se encuentran en la zona de rechazo ($\alpha/2$)

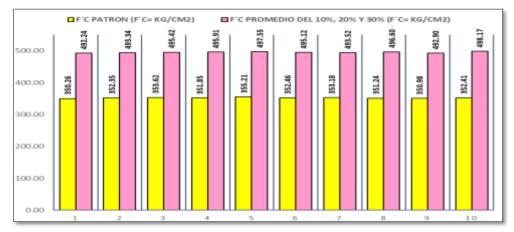
En la figura 9, se observa el valor crítico y el valor del FC Calculado de las variables de estudio, por lo tanto, se rechaza la Hipótesis Nula (**H**₀) y se acepta la hipótesis alterna (**H**_a).

4.4.3. CONTRASTACIÓN DE LA HIPÓTESIS GENERAL

Se rechaza la hipótesis nula (H_o) y se acepta la hipótesis alterna (H_a), donde; los adoquines elaborados con fibras de acero más caucho reciclado si influyen en la resistencia a la comprensión de los adoquines en la ciudad de Huánuco – 2022.

Tabla 16

Comparación del F´c del adoquín patrón y con 15%, 25% y 35% de acero más caucho reciclado


F'C DEL ADOQUIN PATRON Y PROMEDIO CON FIBRAS DE ACERO
MÁSCAUCHO RECICLADO AL 15%, 25% Y 35%

N°	MUESTRA	PATRON	PROMEDIO DEL		
			15%, 25% Y 35%		
1	M-1	350.26	492.24		
2	M-2	352.35	493.34		
3	M-3	353.62	495.42		
4	M-4	351.85	495.91		
5	M-5	355.21	497.55		
6	M-6	352.46	495.12		
7	M-7	353.18	493.52		
8	M-8	351.24	496.60		
9	M-9	350.98	492.90		
10	M-10	352.41	498.17		

Nota. La tabla 14 muestra los valores del adoquín patrón o testigo (T1).

Figura 10

Comparación de los F´c de los ensayos realizados en laboratorio

Nota. Se ve la comparativa de los grupos evaluados.

Interpretación

De la figura se aprecia que los valores de la resistencia a la compresión promedio con adición de 15%, 25% y 35% de fibras de acero más caucho essuperior a las muestras patrón.

Tabla 17Comparativa de los F´c de los adoquines patrón y del promedio con 15%, 25% y 35% de fibras de acero más caucho reciclado

ADOQUÍN PATRÓN Y CON 15%, 25% Y 35% FIBRAS DE ACERO MÁS CAUCHO RECICLADO.						
		Estadístico	Desv. Error			
	Media	352,3560	,03728			
F´C DEL ADOQUÍN	Desviación estándar	1,42298				
PATRÓN	Mínimo	350,26				
	Máximo	355,21				
F'C PROMEDIO	Media	495,0767	,01419			
DE LOS ADOQUÍNES	Desviación estándar	2,02871				
ELABORADOS CON15%, 25% Y	Mínimo	492,24				
35% DEFIBRAS DE ACERO MÁS CAUCHO RECICLADO.	Máximo	498,17				

Nota. Adaptado de Huamán (2020).

Tabla 18

Prueba de normalidad de los f´c de los adoquines patrón y del promedio con 15%, 25% y 35% de fibras de acero más caucho reciclado

	Pruebas de normalidad_					
	Kolmogor	ov-Smi	rnov ^a	Shapiro-V	Vilk	
	Estadístico	gl	Sig.	Estadí stico	gl	Sig.
F'C DEL ADOQUÍN PATRÓN	,147	10	,200*	,852	10	,201
F´C PROMEDIO DE LOSADOQUÍNES HECHOS CON 15%, 25% Y 35% DE FIBRAS DE ACERO MÁS CAUCHO RECICLADO.	,156	10	,200 [*]	,912	10	,358

Nota. La tabla 16 muestra la prueba de normalidad de los datos de la muestra.

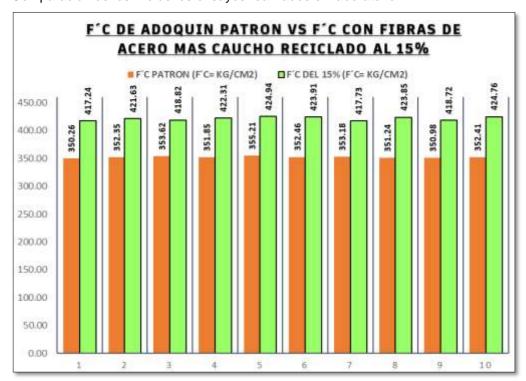
La tabla 16 muestra la prueba de normalidad de las variables de estudio donde se usó los valores del test de SHAPIRO – WILK, ya que las muestras tomadas son inferiores a 50, siendo (p=0.201) para el adoquín patrón, y (p=0.358) para el promedio con 15%, 25% y 35% de fibras de acero más caucho reciclado, (> 0.05), indicándonos la normalidad de los datos

4.4.4. HIPÓTESIS ESPECIFICA 1

- H₀: No Existe una diferencia significativa en la resistencia a la compresión de un adoquín hecho con un 15% de fibras de acero más caucho reciclado en laciudad de Huánuco – 2022.
- Ha: Existe una diferencia significativa en la resistencia a la compresión deun adoquín hecho con un 15% de fibras de acero más caucho reciclado en laciudad de Huánuco – 2022.

Tabla 19

F´c del adoquín patrón y con 15% de acero más caucho reciclado.


F'C DEL ADOQUIN PATRON Y CON FIBRAS DE ACERO MÁS CAUCHORECICLADO AL 15%

N°	MUESTRA	PATRON	15%
1	M-1	350.26	417.24
2	M-2	352.35	421.63
3	M-3	353.62	418.82
4	M-4	351.85	422.31
5	M-5	355.21	424.94
6	M-6	352.46	423.91
7	M-7	353.18	417.73
8	M-8	351.24	423.85
9	M-9	350.98	418.72
10	M-10	352.41	424.76

Nota. La tabla 18 muestra los valores de la muestra del T₂ F'c Kgf/cm²

Figura 11

Comparación de los F´c de los ensayos realizados en laboratorio

Nota. La figura 11 se observa la comparativa de los grupos evaluados.

Interpretación

De la figura se aprecia que los valores de la resistencia a la compresión con adición de 15% de fibras de acero más caucho es superior a las muestras patrón

Tabla 20Comparativa de medias de los F´c de los adoquines patrón y con 15% de fibras de acero más caucho reciclado.

ADOQUÍN PATRÓN Y ADOQUÍN ELABORADO CON 15% FIBRAS DE ACERO

	MÁS CAUCHO RECICLADO.		
		Estadístico	Desv. Error
	Media	352,3560	,03728
F'C DE LOS ADOQUÍNES ELABORADOS CON 15% DE FIBRAS DE ACERO MÁS CAUCHO RECICLADO	Desviación estándar	1,42298	
	Mínimo	350,26	
	Máximo	355,21	
	Media	421,3910	,01513

Nota. Descriptivo de los valores del T₂ (%15).

Tabla 21Normalidad de los F´c adoquín patrón y con 15% de fibras de acero más caucho reciclado.

<u>Pruebas de normalidad</u>								
	Kolmogorov-Smirnova			Shapiro-Wilk				
	Estadístic o	gl	Sig.	Estadístico	gl	Sig.		
F´C DEL ADOQUÍN PATRÓN	,147	10	,200*	,852	10	,201		
F'C DE LOS ADOQUÍNES ELABORADOS CON 15% DE FIBRAS DE ACERO MÁS CAUCHO RECICLADO.	,162	10	,200*	,968	10	,372		

Nota. La tabla muestra la prueba de normalidad del T_2 (15 %),

Interpretación

Para el estudio se usó SHAPIRO – WILK, ya que las muestras tomadas son inferiores a 50, donde la normalidad (p=0.201) fue para el adoquín patrón, y (p=0.372) para el 15% de fibras de acero más caucho reciclado.

Tabla 22Prueba "t" evaluada en las muestras Independientes (0% y 15%)

Me	edia	Vari	anza					Sia.
Media 1	Media 2	Varianza 1	Varianza 2	Inferior	Superior	t	gl	Sig. Bilateral
352.3 6	421.39	2.02	9.07	-71.31	-66.76	-65.54	13	<0.0001

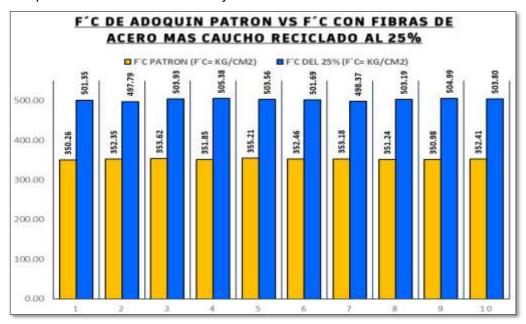
Nota. La tabla muestra la prueba t para muestras independientes entre los tratamientos y la significancia que existe entre ellos,

La tabla 21 muestra la prueba t para muestras independientes demuestran que sí hay significancia entre la media de los grupos o tratamientos (0% y 15%) analizados siendo sus valores (t=-65.54) (p=0.001<0.05). Por tanto, la hipótesis que se toma demuestra que existe una diferencia significativa en la resistencia a la compresión de un adoquín hecho con un 15% de fibras de acero más caucho reciclado, con respecto al 0% en la ciudad de Huánuco – 2022.

4.4.5. HIPÓTESIS ESPECIFICA 2

- Ho: No existe una diferencia significativa en la resistencia a la compresión de un adoquín hecho con un 25% de fibras de acero más caucho reciclado en laciudad de Huánuco – 2022.
- Ha: Existe una diferencia significativa en la resistencia a la compresión deun adoquín hecho con un 25% de fibras de acero más caucho reciclado en laciudad de Huánuco – 2022.

Tabla 23F´c del adoquín patrón y con 25% de fibras de acero más caucho reciclado


F'C DEL ADOQUIN PATRON Y CON FIBRAS DE ACERO MÁS CAUCHORECICLADO AL 25%

N°	MUEST RA	PATR ON	25%
1	M-1	350.26	501.35
2	M-2	352.35	497.79
3	M-3	353.62	503.93
4	M-4	351.85	505.38
5	M-5	355.21	503.56
6	M-6	352.46	501.69
7	M-7	353.18	498.37
8	M-8	351.24	503.19
9	M-9	350.98	504.99
10	M -10	352.41	503.80

Nota. La tabla 22 muestra los valores del T₃ (25%)

Figura 12

Comparación de los F´c de los ensayos realizados en laboratorio

Nota. Se ve la comparativa de los grupos evaluados.

Interpretación

De la figura se aprecia que los valores de la resistencia a la compresión con adición de 25% de fibras de acero más caucho es superior a las muestras patrón.

Tabla 24Comparativa de medias de los F´c de los adoquines patrón y con 25% de fibras de acero más caucho reciclado

ADOQUÍN PATRÓN Y ADOQUÍN ELABORADO CON 25% FIBRAS DE ACERO MÁS									
	CAUCHO RECICLADO.								
		Estadísti co	Desv. Error						
	Media	352,356 0	,03728						
F´C DEL ADOQUÍN PATRÓN	<u>Desviación</u> <u>estándar</u>	<u>1,42298</u>							
TAIKON	Mínimo	350,26							
	Máximo	355,21							
F'C DE LOS ADOQUÍNES	Media	502,405 0	,01761						
ELABORADOS CON 25% DE FIBRAS DE ACERO	Desviación estándar	2,60253							
MÁS CAUCHO RECICLADO	_ <u>Mínimo</u>	<u>497,79</u>							
		505,38							

Nota. La tabla muestra la comparación de los descriptivos, del T₃ (25%) y el T₃ (25%)

Tabla 25Normalidad de los F´c adoquín patrón y con 25% de fibras de acero más caucho reciclado.

Pruebas de normalidad							
	Kolmogorov-Smirnov ^a			Shapiro-Wilk			
	Estadísti co	g I	Sig.	Estadísti co	gl	Sig.	
F´C DEL ADOQUÍN PATRÓN	,147	1 0	,200 [*]	,852	10	,201	
F'C DE LOS ADOQUÍNES ELABORADOS CON 25% DE FIBRAS DE ACERO MÁS CAUCHO RECICLADO.	,174	1 0	,200°	,968	10	,381	

Nota. La tabla muestra la prueba de normalidad de los datos de la muestra del T_3 (25%)

La tabla 24 muestra la prueba de normalidad de los datos de la

muestra con 25 % de material reciclado, se consideró los resultados de SHAPIRO – WILK, ya que las muestras tomadas son inferiores a 50, donde la normalidad (p=0.201) fue para el adoquín patrón, y (p=0.381) para el 25% de fibras de acero más caucho reciclado.

Tabla 26Prueba t evaluada en las muestras independientes (0 y 25%)

Me	edia	Varia	anza					Sig.
Media 1	Media 2	Varianza 1	Varianza 2	Inferior	Superior	t	gl	Bilateral
352.36	502.41	2.02	6.77	-152	-148.1	- 159.9	18	<0.0001

Nota. La taba "T" muestra la diferencia estadística significativa que existe entre las muestras independientes con 0 y 25% de material reciclado, prueba de t de Student

La prueba t realizada demuestran que sí hay significancia entre la media de los grupos analizados siendo sus valores (t=-159.97, p=0.001<0.05). Por tanto, la hipótesis que se toma demuestra que existe una diferencia significativa en la resistencia a la compresión de un adoquín hecho con un 25% de fibras de acero más caucho reciclado en la ciudad de Huánuco – 2022.

4.4.6. HIPÓTESIS ESPECIFICA 3

Ho: No existe una diferencia significativa en la resistencia a la compresión de un adoquín hecho con un 35% de fibras de acero más caucho reciclado en laciudad de Huánuco – 2022.

Ha: Existe una diferencia significativa en la resistencia a la compresión deun adoquín hecho con un 35% de fibras de acero más caucho reciclado en laciudad de Huánuco – 2022.

Tabla 27F'c del adoquín patrón y con 35% de fibras de acero más caucho reciclado.

F'C DEL ADOQUIN PATRON Y CON FIBRAS DE ACERO MÁS CAUCHORECICLADO AL 35%

N°	MUEST RA	PATR ON	35%
1	M-1	350.26	558.14
2	M-2	352.35	560.61
3	M-3	353.62	563.50
4	M-4	351.85	560.04
5	M-5	355.21	564.14
6	M-6	352.46	559.76
7	M-7	353.18	564.45
8	M-8	351.24	562.76
9	M-9	350.98	554.98
10	M-10	352.41	565.96

Nota. La tabla muestra los valores de la F'c de las muestras del T4 (35%).

Figura 13

Comparación de los F´c de los ensayos realizados en laboratorio

Nota. La tabla muestra la comparativa de los grupos evaluados.

Interpretación

De la figura se aprecia que los valores de la resistencia a la

compresión con adición de 35% de fibras de acero más caucho es superior a las muestras patrón.

Tabla 28Comparativa de medias de los F´c de los adoquines patrón y con 35% de fibras de acero más caucho reciclado.

ADOQUÍN PATRÓN Y ADOQUÍN ELABORADO CON 35% FIBRAS DE ACERO MÁS CAUCHO RECICLADO.							
		Estadístico	Desv. Error				
	_ <u>Media</u>	<u>352,3560</u>	<u>,03728</u>				
F´C DEL ADOQUÍN PATRÓN	Desviación estándar		_				
	 Mínimo	<u>350,26</u>					
	Máximo	355,21					
	Media	561,4340	,01812				

Nota. La tabla muestra la comparación de los descriptivos, del T₁ (0%) y el T₄ (35%)

Tabla 29Normalidad de los F´c adoquín patrón y con 35% de fibras de acero más caucho reciclado.

	Р	ruebas d	de normal	idad		
	Kolmogo	rov-Smir	'nov ^a	Sh	apiro-Wil	k
	Estadístico			Estadístico		
		gl	Sig.		gl	Sig.
F´C DEL ADOQUÍN PATRÓN	,147	10	,200 [*]	,852	10	,201
F'C DE LOS ADOQUÍNES ELABORADOS CON 35% DE FIBRAS DE ACERO MÁS CAUCHO RECICLADO.	,186	10	,200 [*]	,968	10	,394

Nota. La tabla muestra la prueba de normalidad de los datos de la muestra del T_4 (35%).

Interpretación

Para el estudio se usó SHAPIRO – WILK, ya que las muestras tomadas son inferiores a 50, donde la normalidad (p=0.201) fue para el

adoquín patrón, y (p=0.394) para el 35% de fibras de acero más caucho reciclado.

Tabla 30Prueba "t evaluada en las muestras independientes 0 y 35%.

Media		Varianza						Sig.
Media 1	Media 2	Varianza 1	Varianza 2	Inferior	Superior	t	gl	Bilateral
352.36	561.43	2.02	11.21	-211.6	-206.6	-181.7	12	<0.0001

Nota. La tabla muestra la comparación de los descriptivos, del T_1 (0%) y el T_4 (35%) y en donde se observa la diferencia estadística que existe entre ellos, prueba t de Student para muestras independientes p<0.05.

Interpretación

La prueba "t" realizada demuestran que sí hay significancia entre la media de los grupos analizados siendo el valor (t=-181.7, p=0.0001<0.05). Por tanto, la hipótesis que se toma demuestra que existe una diferencia estadística significativa en la resistencia a la compresión de un adoquín hecho con un 35% de fibras de acero más caucho reciclado en la ciudad de Huánuco – 2022

CAPITULO V

DISCUSIÓN DE RESULTADOS

5.1. PRESENTACIÓN DE LA CONTRASTACIÓN DE LOS RESULTADOS DEL TRABAJO DE INVESTIGACIÓN

Una vez hecha los ensayos correspondientes se obtuvieron resultados muy significativos del promedio con 15%, 25% y 35% de fibras de acero más caucho reciclado siendo el valor de 495.0767kgf/cm² siendo mayor alresultado del grupo patrón, este resultado concuerda con Pérez y Pullas (2022), que al añadir a la mezcla arena volcánica, fibras de acero y PET obtuvo la resistencia de 186kgf/cm² superando a su grupo de patrón; así mismo concuerda con Santos y Tacuri (2019) que al agregar fibra de aceroobtiene un valor promedio de 640 kg/cm² siendo mejor que el grupo tradicional; así mismo coincide con Paredes (2021) que al añadir residuosde caucho al 10%, 20% y 30% obtienen valores de F´C de 21.2MPa, 20.9 MPa y 20.9 MPa siendo superiores a la norma colombiana establecidade 19 Mpa; de la misma manera discrepa con Rea (2022) que al utilizar viruta metálica y caucho reciclado los valores obtenidos con el 3% y 5% son 271 kg/cm² y 224 kg/cm² siendo inferiores al grupo patrón convencional; así mismo discrepa con Pérez y Arrieta (2017) que al agregar 30% caucho grueso y 70% caucho blando en 5% en peso, su resultado a compresión fue 2244 Psi siendo inferior al concreto convencional aunque cumpliendo con su norma establecido.

Después de realizar los ensayos correspondientes se obtuvieron resultados muy significativos con 15% de fibras de acero más caucho reciclado siendo el valor promedio de 421.3910kgf/cm² siendo mayor al resultado del grupo patrón, este resultado concuerda con Gutiérrez y Vizarreta (2021) que al agregar fibras de acero recicladas provenientes de llantas desechadas su F´C alcanza el valor de 450 kgf/cm²; así mismo discrepa con Chavarri y Rubio (2020) donde sus resultados de los F´C demodificados con 3%, 5% y 7% con caucho en lugar de agregado fino son (310.042 kg/cm²), (318.118 kg/cm²) y (328.313 kg/ cm²) siendo inferior a su concreto convencional.

Después de realizar los ensayos correspondientes se obtuvieron resultados muy significativos con 25% de fibras de acero más caucho reciclado siendo el valor promedio de 502.4050kgf/cm² siendo mayor al resultado del grupo patrón, esto concuerda con Manrique y Manrique (2021) donde sus resultados con 1.5% de caucho y 1.5% de acero, en 28días es 356,5 kg/cm², con 3% caucho alto y 3% sólido en 28 días es 330,2kg/cm² y con 4,5% caucho y 4,5% sólidos en 28 días fue 317,2 kg/cm², siendo estos resultados positivos y que superan al grupo patrón; así mismoconcuerda con Angarita y Lizarazo (2018) donde al incorporar los hilos más gruesos de acero se tiene un aumento de 2,55% y 1,31%, con respecto a su resistencia siendo superior al grupo convencional.

Después de realizar los ensayos correspondientes se obtuvieron resultados muy significativos con 35% de fibras de acero más caucho reciclado siendo el valor promedio de 561.4340kgf/cm² siendo mayor al resultado del grupo patrón, este resultado concuerda con Marín (2020) queal añadir 3% de caucho obtiene el valor más elevado de 529,27 kg/cm² siendo muy superior al grupo patrón; así mismo discrepa con Mejía (2020)que al usar de 5% a 30% de caucho para reemplazar la masa total de arena, los valores que obtiene son 20.47Mpa, 17.42Mpa, 16.19Mpa y 11.24Mpa siendo estos inferiores al grupo patrón;

CONCLUSIONES

- La adición de fibras de acero y caucho reciclado en la composición de los adoquines ha demostrado un incremento sustancial en su resistencia a la compresión. Este hallazgo es esencial, ya que indica que la combinación de estos materiales puede fortalecer de manera efectiva los adoquines, haciéndolos más capaces de soportar cargas compresivas.
- La investigación reveló que combinar fibras de acero y caucho reciclado en la mezcla de adoquines generó una sinergia positiva. La presencia simultánea de estos materiales proporcionó beneficios complementarios, mejorando la resistencia a la compresión de manera más efectiva que si se usaran por separado.
- Se identificó la importancia de optimizar las proporciones de fibras de acero y caucho reciclado para lograr el rendimiento máximo en términos de resistencia a la compresión. Es esencial encontrar el equilibrio adecuado para garantizar mejoras significativas sin comprometer otras propiedades esenciales del adoquín.
- Además de la resistencia a la compresión, se observó que la presencia de caucho reciclado contribuía a mejorar la tenacidad y la capacidad del adoquín para absorber impactos. Esto es especialmente relevante en aplicaciones donde los adoquines están expuestos a cargas dinámicas, como el tráfico vehicular.
- La inclusión de caucho reciclado no solo aporta beneficios técnicos, sino que también tiene implicaciones positivas desde el punto de vista ambiental. La utilización de materiales reciclados contribuye a la sostenibilidad al reducir la dependencia de recursos no renovables y la acumulación de residuos.
- La investigación destaca la viabilidad de aplicar esta mejora en la fabricación de adoquines a escala industrial. Sin embargo, se sugiere llevar a cabo estudios adicionales para evaluar la adaptabilidad del proceso de producción y considerar aspectos económicos asociados con la implementación de esta tecnología.

RECOMENDACIONES

- Sugiero la adopción de adoquines mejorados con fibras de acero y caucho reciclado en proyectos de construcción urbanos y viales. Destaca los beneficios en términos de resistencia a la compresión, durabilidad y sostenibilidad.
- Proporcionar directrices específicas sobre las proporciones ideales de fibras de acero y caucho reciclado en la mezcla para maximizar los beneficios observados. Esto facilita la implementación práctica en proyectos futuros.
- Recomiendo ajustes en los procesos de fabricación para garantizar una distribución homogénea de las fibras y el caucho reciclado en los adoquines. Esto puede incluir cambios en la maquinaria, tiempos de mezcla y condiciones de curado.
- Sugiero programas de capacitación para profesionales de la construcción, ingenieros y arquitectos sobre las ventajas de utilizar adoquines mejorados.
 También destaca los aspectos medioambientales y sostenibles de esta tecnología.
- Invitar a futuras investigaciones que profundicen en aspectos específicos, como la variación en las propiedades mecánicas en diferentes condiciones ambientales o la optimización continua de la dosificación de materiales.
- Recomiendo la difusión de los resultados de la investigación a través de conferencias, publicaciones científicas y medios especializados. Esto puede aumentar la visibilidad y aceptación de la tecnología mejorada en la industria.

REFERENCIAS BIBLIOGRÁFICAS

- Estupiñan, A., y Ariza, M. (2018). Análisis del comportamiento mecánico de adoquines de concreto con adición de fibra de acero de llantas recicladas con adición de fibra de acero de llantas recicladas [Tesis de Pregrado, Universidad de la Salle]. Repositorio institucional.

 Obtenido dehttps://ciencia.lasalle.edu.co/ing_civil/390.
- Aquino R. (2015). Diseño y aplicación de concreto ecológico confibras de polipropileno para pavimentos rígidos [Tesis dePregrado, Universidad Nacional de Cajamarca]. RepositorioInstitucional. Obtenido de file:///C:/Users/Kevin/Downloads/T%20666.%20893%20A657%20201 5.pdf
- Billmeyer, W. (1975). *Ciencia de los polímeros.* (E. R. S.A., Ed.) Obtenidode https://books.google.com.pe/books?id=Fe0FEAAAQBAJ&pg=PA402&dq=polibutadieno&hl=es&sa=X&ved=2ahUKEwiKt_ffq_P4AhVQILkGHQWtBX0Q6wF6BAgHEAE#v=onepage&q=polibutadieno&f=false
- CE.010. (s.f.). ICG. Obtenido de chromeextension://efaidnbmnnnibpcajpcglclefindmkaj/https://cdnweb.construccion.org/normas/files/tecnicas/Pavimentos_Urbanos.pdf
- Chavarri, A., y Rubio, M. (2020). Efecto del caucho reciclado en la resistencia a compresión en adoquines de concreto diseñados para pavimentos articulados [Tesis de Pregrado, UniversidadCésar Vallejo]. Repositorio Institucional. Obtenido de https://hdl.handle.net/20.500.12692/53492
- Dutscher, V. (1981). El acero en la construcción (Vol. 1).Reverté. Obtenido de
 - https://books.google.com.pe/books?id=isYiEAAAQBAJ&pg=PA1&dq=el+acero&hl=es&sa=X&ved=2ahUKEwjr_dHjxPL4AhWsB7kGHYt0BD4Q6AF6BAgHEAl#v=onepage&q&f=false

- E.060. (2009). E.060 CONCRETO ARMADO. Ministerio de viviendas, Construcción y Sane amiento. Obtenido de https://www.controlmixexpress.com/docs/E060_CONCRETO_ARMAD O.pdf
- Espinoza, E. (2016). "Influencia del autoconstrucción en la vulnerabilidad sísmica de las viviendas familiares de concreto armado en la ciudad de Abancay". *Tesis de grado*. Universidad Alas Peruanas, Abancay. Obtenido de http://repositorio.uap.edu.pe/bitstream/uap/5503/1/ESPINOZA_CHIPA NA-Resumen.pdf
- Flores, R. (2002). "Diagnostico preliminar de la vulnerabilidad sísmica de las autoconstrucciones en Lima". *Tesis de grado*. Pontificia Universidad La Católica del Peru, Lima. Obtenido de http://tesis.pucp.edu.pe/repositorio/bitstream/handle/20.500.12404/56 68/FLORES_ROBERTO_VULNERABILIDAD_SISMICA_AUTOCONS TRUCCIONES_LIMA.pdf? sequence=1&isAllowed=y
- Fuentes, M. (2014). Obtención de láminas impermeables a partirde caucho reciclado utilizando resina de mortero de uretano [Tesis de Pregrado, Universidad Central del Ecuador]. Repositorio Institucional.Obtenido de http://www.dspace.uce.edu.ec/handle/25000/2874
- Gernot, M. (2005). *Manual de Construcción Para Viviendas Antisísmicas De Tierra*. Alemania: Universidad DE Kassel.
- Gutiérrez, A., y Vizarreta, E. (2021). Incremento del módulo de rotura por flexo tracción de losas de concreto hidráulico empleando fibras de acero provenientes de neumáticos reciclados para uso como losas en pavimentos [Tesis de pregrado, Universidad Peruana de Ciencias Aplicadas]. Repositorio Institucional. Obtenido de http://hdl.handle.net/10757/656618
- Hernández, R., Fernández C., y Baptista, P. (2006). *Metdologia de la investigación* (cuarta ed.). Mexico: Interamericana Editores, S.A. DE

.C.V. .

- Hernández, R., Fernández; C., y Baptista, M. (2010).

 Metodología de la Investigación. México: Mc Graw Hill Educación.
- López, F. (2006). *Elementos de topografía y construcción.* Edicionesde la Universidad de Oviedo. Obtenido de https://books.google.com.pe/books?id=zZplT5VP788C&pg=PA211&d q=el+acero+en+la+construccion&hl=es&sa=X&ved=2ahUKEwi5gYbD yPL4AhWMGbkGHZD3BUMQ6AF6BAgCEAl#v=onepage&q&f=false
- Manrique, L., y Manrique, F. (2021). Elaboración de adoquines de concreto ecológico con adición de caucho y acero reciclado, para pavimentos de tránsito ligero - Mazamari 2021 [Tesis dePregrado, Universidad César Vallejo]. Repositorio Institucional. Obtenido de https://hdl.handle.net/20.500.12692/86206
- Marín, C. (2020). Evaluación de las propiedades físico mecánicas deladoquín 6 tipo II, reemplazando el agregado fino por caucho reciclado, Cusco 2019[Tesis de Pregrado, Universidad Andina del Cusco]. Repositorio Institucional. Obtenidodehttps://hdl.handle.net/20.500.12557/3996
- Martín, Á. (2015). Aplicación del caucho reciclado como solución constructiva ecológica [Tesis de Pregrado, Universitar Politecnica de Valencia].

 Repositorio Institucional. Obtenido de http://hdl.handle.net/10251/55735
- Mejía, J. (2020). Análisis de la influencia del caucho de llantas recicladas como agregado en la fabricación de adoquines de concreto[Tesis de Pregrado, Universidad de Cartagena]. Repositorio Institucional. Obtenido de https://hdl.handle.net/11227/14994
- Muñoz , I. (2015). Metodología de la investigación. OXFORD.
- NTP 399.611. (2019). Lima: Inacal.
- Paredes, A. (2021). Análisis de concreto adicionado con residuos de llanta de caucho para la elaboración de prefabricados para urbanismo [Tesis de Pregrado, Universidad Militar Nueva Granada]. Repositorio Institucional. Obtenido dehttp://hdl.handle.net/10654/38544
- Pavimentos y otros elementos urbanos prefabricados de hormigón. (2019).

 andece. Obtenido de chromeextension://efaidnbmnnnibpcajpcglclefindmkaj/http://www.construmec

- Paz , M. (2016). Reciclado de PET a partir de botellas post consumo [Tesis de Pregrado, Universidad Nacional de córdoba]. Repositorio Institucional. Obtenido de http://hdl.handle.net/11086/5567
- Peláez; J., Velásquez; M., y Giraldo, H. (2016). *Aplicaciones de caucho reciclado: Una revisión de la literatura*. Universidad Militar Nueva Granada.doi:https://doi.org/10.18359/rcin.2143
- Pérez, . J., y Pullas, A. (2022). Diseño de hormigón hidráulico para adoquín vehicular de alta resistencia utilizando arena volcánica, fibra de acero y PET [Tesis de Pregrado, Universidad Laica Vicente Rocafuerte de Guayaquil]. Repositorio Institucional. Obtenido de http://repositorio.ulvr.edu.ec/handle/44000/4993
- Pérez, C., y Arrieta, L. (2017). Estudio para caracterizar una mezcla de concreto con caucho reciclado en un 5% en peso comparado con una mezcla de concreto tradicional de 3500 Psi. Repositorio Institucional.

 Obtenido dehttp://hdl.handle.net/10983/15486
- RNE. (s.f.). Reglamento Nacional de Edificaciones.
- Rodríguez, A. (2018). *lifeder.com*. Obtenido de https://www.lifeder.com/viabilidad-investigacion/
- Rodríguez, E. (2017). Diseño sísmico en construcciones de adobe y su incidencia en la reducción de desastres en la ciudad de Chincha 2017. Tesis de grado. Universidad Cesar Vallejo, Lima.
- Rojas, D. (2014). Interventoría. Manual práctico. Bogotá: Universidad de Medellín. Obtenidode https://books.google.com.pe/books?id=YzOjDwAAQBAJ&pg=PA109&dq=tipo+de+adoquin&hl=es&sa=X&ved=2ahUKEwi2lPLArfDzAhWkA9QKHXqUAVUQ6AF6BAgKEAI#v=onepage&q=tipo%20de%20adoquin&f=false
- Santos, T. y Julián, V. (2019). Diseño de pavimentos con adoquines de concreto adicionando fibra de acero, Avenida César Vallejo, Villa el Salvador Lima- 2019[Tesis de Pregrado, Universidad César Vallejo].

 Repositorio Institucional. Obtenido de https://hdl.handle.net/20.500.12692/72418

- T. R, D. (1956). Introducción a la Química. Barcelona: Reverté, S.A.
- Virginie, M. (2011). Los caminos del reciclaje. España: Nuevos Emprendimientos Editoriales S.L.
- Deudor Suárez, Y. (2025). Evaluación de la resistencia a la compresión del adoquín elaborado con fibras de acero más caucho reciclado en la ciudad de Huánuco 2022 (Tesis de Pregrado, Universidad de Huánuco. Repositorio institucional de la universidad.

COMO CITAR ESTE TRABAJO DE INVESTIGACIÓN

Deudor Suarez, Y. (2025). Evaluación de la resistencia a la compresión del adoquín elaborado con fibras de acero más caucho reciclado en la ciudad de Huánuco - 2022 [Tesis de pregrado, Universidad de Huánuco]. Repositorio Institucional UDH. http://...

ANEXOS

ANFXO 1

MATRIZ DE CONSISTENCIA

TITULO: "EVALUACIÓN DE LA RESISTENCIA A LA COMPRESIÓN DEL ADOQUÍN ELABORADO CON FIBRAS DE ACERO MÁS CAUCHO RECICLADO EN LA CILIDAD DE HUÁNLICO - 2022"

FORMULACION DEL PROBLEMA

PROBLEMA GENERAL:

¿Cuál es la resistencia a la compresiónde un adoquín elaborado con fibras de acero más caucho reciclado en la ciudad de Huánuco – 2022?

PROBLEMAS ESPECÍFICOS:

- 1. ¿Cuál es la resistencia a la compresiónde un adoquín hecho con un 15% de fibras de acero más caucho reciclado en la ciudad de Huánuco 2022?
- 2. ¿Cuál es la resistencia a la compresiónde un adoquín hecho con un 25% de fibras de acero más caucho reciclado en la ciudad de Huánuco 2022?
- 3. ¿Cuál es la resistencia a la compresiónde un adoquín hecho con un 35% de fibras de acero más caucho reciclado en la ciudad de Huánuco 2022?

OBJETIVO GENERAL:

OBJETIVOS

Determinar la resistencia a la compresión de un adoquín elaborado con fibras de acero más caucho reciclado en la ciudad de Huánuco – 2022.

OBJETIVOS ESPECIFICOS:

- 1. Determinar la resistencia a la compresión de un adoquín hecho con un 15% de fibras de acero más caucho reciclado en la ciudad de Huánuco 2022
- 2. Determinar la resistencia a la compresión de un adoquín hecho con un 25% de fibras de acero más caucho reciclado en la ciudad de Huánuco 2022.
- 3. Determinar la resistencia a la compresión de un adoquín hecho con un 35% de fibras de acero más caucho reciclado en la ciudad de Huánuco 2022.

HIPÓTESIS HIPÓTESIS GENERAL:

Existe una diferencia significativa en la resistencia a la compresión de un adoquín elaborado con fibras de acero más caucho reciclado en la ciudad de Huánuco – 2022.

HIPÓTESIS ESPECIFICA:

- 1. Existe una diferencia significativa en la resistencia a la compresión de un adoquín hecho con un 15% de fibras de acero más caucho reciclado en la ciudad de Huánuco 2022.
- 2. Existe una diferencia significativa en la resistencia a la compresión de un adoquín hecho con un 25% de fibras de acero más caucho reciclado en la ciudad de Huánuco 2022.
- 3. Existe una diferencia significativa en la resistencia a la compresión de un adoquín hecho con un 35% de fibras de acero más caucho reciclado en la ciudad de Huánuco 2022.

METODOLOGÍA

TIPO DE INVESTIGACIÓN:

ENFOQUE:

Cuantitativo

ALCANCE:

Aplicativo DISEÑO:

experimental

POBLACION:

Está representada por 36 adoquines donde se le incorporara fibras de acero mas caucho reciclado

MUESTRA:

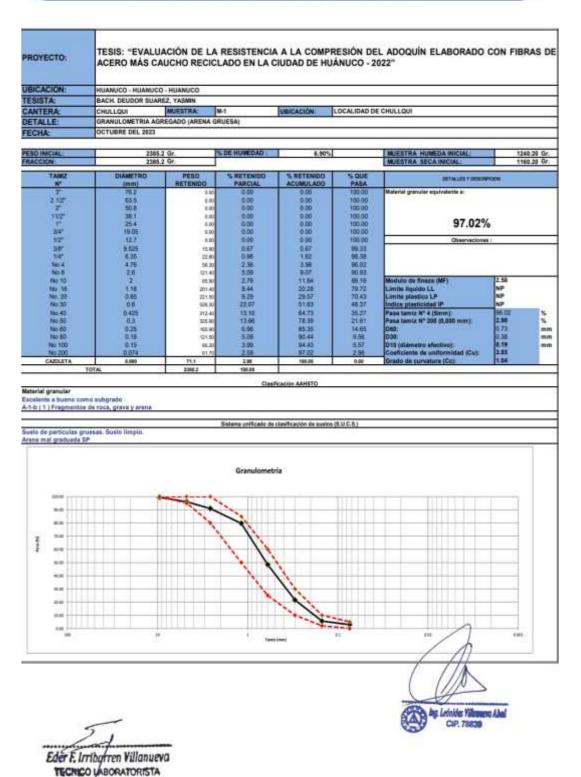
Se tomará 12 especímenes de adoquines donde se le incorporará fibras de acero más caucho reciclado.

Variables:

V.D.= Resistencia a la compresión del adoquín.
V.I.= Fibras de acero y caucho reciclado

ANEXO 2 MAPA DE UBICACIÓN DEL DISTRITO DE AMARILIS

ANEXO 3 RESULTADOS DE LABORATORIO


PROVECTO:	TESIS: "EVALUACIÓN DE LA RESISTENCIA A LA COMPRESIÓN DEL ADOQUÍN ELABORADO CON FIBRAS DE ACERO MÁS CAUCHO RECICLADO EN LA CIUDAD DE HUÁNUCO - 2022"								
UBICACION	HUANUCO - HUAN	HUANUCO - HUANUCO - HUANUCO							
TESSTA:	BACH, DEUDOR SI	JAREZ, YASMIN							
CANTERA:	CHULLOUI MRSTRA M.1			HW FREATION	NP (
DETALLE	CANTERA PARA AGREGADO (ARENA GRUESA)								
PROFUNDIÇÃO	-			UBICACIÓN	LOCALIDAD DE CHULLOUI				
FECHA	OCTUBRE DEL 202	n		•					

PERFIL ESTRATIGRAFICO

ESPECOR	ESTRATE	BUCK	AARHTO	SWBOLD	DESCRIPCION	PANEL FOTOGRAPICO
72	Agregado fino (untre grusse)	52"	A-1-0(1)		Arvina mul griedusche	

^{*} MUESTRA PROPORCIONADA POR EL SOLICITANTE

Eder F. Irribarren Villanueva TECNICO JABORATORISTA

PROYECTO:	TESIS: "EVALUACIÓN DE LA RESISTENCIA A LA COMPRESIÓN DEL ADOQUÍN ELABORADO CON FIBRAS DE ACERO MÁS CAUCHO RECICLADO EN LA CIUDAD DI HUÁNUCO - 2022"					
JBICACION:	HUANUCO - HUANUCO	- HUANUCO				
TESISTA:	BACH. DEUDOR SUAR	EZ, YASMIN				
CANTERA:	CHULLQUI		UBICACIÓN:	LOCALIDAD D	E CHULLQUI	
ETALLE:	PESO UNITARIO SUEL	TO SECO	Account of the second		***************************************	
PROFUNDIDAD:						
ECHA:	OCTUBRE DEL 2023					
	PESO		UELTO SECO -			
MUESTRA	VVIVIOUS CONTRACTOR OF THE CON	Unid.	M+1	M-2	M+3	M-4
	do grueso + recipiente	gr_	6901	6889	6836	6881
eso del recipiente	400	gr.	2287,00	2287.00	2287,00	2287.00
olumen de recipier		em3.	2759.00 4614.00	2759.00 4602.00	2759,06 4549,00	2759.00 4594.00
Peso del agregado grueso Peso unitario suelto seco		Kg/m3	1672,35	1668.00	1648.79	1665.10
eso Unitario Cor	mpacto seco	1663.	56 Kg/m3.			
Peso Unitario Con	mpacto seco	1663.	56 Kg/m3.			

PROYECTO:	TESIS: "EVALUACIÓN DE LA RESISTENCIA A LA COMPRESIÓN DEL ADOQUÍN ELABORADO CON FIBRAS DE ACERO MÁS CAUCHO RECICLADO EN LA CIUDAD DE HUÁNUCO - 2022"						
UBICACION:	HUANUCO - HUANUCO -	HUANUCO					
TESISTA:	BACH, DEUDOR SUARE	Z, YASMIN					
CANTERA:	CHULLQUI		UBICACIÓN:	LOCALIDAD DE	E CHULLQUI		
DETALLE:	PESO UNITARIO SUELTO	O SECO					
PROFUNDIDAD:	•						
FECHA:	OCTUBRE DEL 2023						
	PESO UN	ITARIO CO	OMPACTO SEC	O - NTP 400,01	7		
MUESTRA	* MOSE 3015	Unid.	M-1	M-2	M-3	M-4	
Peso seco del agrega	do grueso + recipiente	gr.	7352	7348	7366	7328	
Peso del recipiente	72.0	gr.	2287.00	2287.00	2287.00	2287.00	

2759.00

1835.81

gr.

2759,00

5061,00

1834.56

2759,00

5079.00

1840.88

ing. Letnides Villaguero Abel CIP. 78839 1827.11

		Mark Colons
Paca Unitario Compacta core	1834 54	Kerlen k

Volumen de recipiente

Peso del agregado grueso Peso unitario suelto seco

> Eder F. Irribarren Villanueva TECNICO JABORATORISTA

	0				
JBICACION:	HUANUCO - HUANUCO - HUANUCO				
PROPIETARIO:	BACH, DEUDOR SUAREZ, YASMIN				
OLICITA:	BACH, DEUDOR SUAREZ, YASMIN	-			
ANTERA:	CHULLQUI MUESTRA: M-1	UBICACIÓN:	LOCALIDAD DE	CHULLQUI	
ECHA:	OCTUBRE DEL 2023				
	GRAVEDAD ESPECIFIC	CA Y ABSORCION DE LO	OS AGREGADOS		
	AGREG	ADO GLOBAL MTC E 296			
Α.	Peso Mat Sat. Sup. Seca (En Aire) (gr)	1551	1545	1548	
8	Peso Mat Sat. Sup. Seca (En Agua) (gr)	944.6	941.7	943.1	
С	Vol. de masa + vol de vacios = A-B (gr)	806.4	603.3	604.9	
D	Peso material seco en estufa (105°C)(gr)	1519.3	1513.6	1516.5	-
E	Vol. de masa = C- (A - D) (gr)	574.7	571.0	573.4	PROMEDIC
	Pe bulk (Base seca) = D/C	2.505	2.509	2.507	2507
	Pe bulk (Base saturada) = A/C	2.058	2.561	2.559	2.559
	Pe Aparente (Base Secal) = D/E	2644	2.647	2.645	2645
	% de absorción = ((A - D) / D * 100)	2.086	2.075	2.077	2.079
	[wide absorbon = ((A - D)) D - 100]	2.000	2015	2,000	2002

PROYECTO:	TESIS: "EVALUACIÓN DE LA RESISTENCIA A LA COMPRESIÓN DEL ADOQUÍN ELABORADO CON FIBRAS DE ACERO MÁS CAUCHO RECICLADO EN LA CIUDAD DE HUÁNUCO - 2022" HUANUCO - HUANUCO - HUANUCO						
UBICACION:	HUANUCO - HUA	NUCO - HUANUO	0				
TESISTA:	BACH, DEUDOR S	SUAREZ, YASMI	N				
CANTERA:	CHULLQUI		UBICACIÓN:	LOCALIDAD DE CHULL	QUI		
DETALLE:	CANTERA PARA	The state of the s	ENA GRUESA)				
ECHA	OCTUBRE DEL 20	2007	ONE ENDOGRAPOUS NOT MAIN	TI LINUX ENGLISHADO			
	100	ASTM D -	2216 CONTENIDO D	E HUMEDAD			
MUESTRA		M-1	M-2	M-S	NH.		
Suelo Húmedo + I Suelo seco + Env		425,3 400,2	415.2 391.6	438.1 412.7	405,8 381,6		
Peso de Envase	and the same of th	33.5	35.8	33,7	34.9		
Peso del Agua		25.10	23.60	25.40	24.22		
^l eso de Suelo Se	co	366.70	355.80	379.00	346.70		
PROMEDIO %		6.84%	6.63%	6.79%	6.99%		
				HUMEDAD	6.79%		

PROYECTO:	TESIS: "EVALUACIÓN DE LA RESISTENCIA A LA COMPRESIÓN DEL ADOQUÍN ELABORADO CON FIBRAS DE ACERO MÁS CAUCHO RECICLADO EN LA CIUDAD DE HUÁNUCO - 2022"
UBICACIÓN:	HUANUCO - HUANUCO - HUANUCO
TESISTA:	BACH. DEUDOR SUAREZ, YASMIN
DETALLE:	CANTIDAD DE MATERIAL FINO QUE PASA EL TAMIZ Nº200
FECHA:	OCTUBRE DEL 2023

(NORMA AASHTO C-117)

PESO ORIGINAL SECO (gr)	P.M. LAVADA SECA (gr)	% MATERIAL FINO
1254	1219	2.79

Observaciones:

Muestra tomada en campo para su procesamiento en laboratorio

Eder F. Irribarren Villanueva TECNICO VABORATORISTA

PROYECTO:		CON FIBE	TENCIA A LA COMPRESIÓN DEL RAS DE ACERO MÁS CAUCHO JCO - 2022"
UBICACION:	HUANUCO - HUANUCO - HUAN	vuco	
PROPIETARIO:	BACH, DEUDOR SUAREZ, YAS	MIN	
SOLICITA:	BACH, DEUDOR SUAREZ, YAS	MIN	
CANTERA:	CHULLQUI		
UBICACIÓN:	LOCALIDAD DE CHULLQUI		
FECHA:	OCTUBRE DEL 2023		
D MEZCLA PARA:	210Kg/Cm2	HTP/CHI H	
CEMENTO : Portlad STM, T ACREGADO GLOBAL HOR	TIDO I, MARCA ANDINO MICION : Provenante de la Cantera "CHULLOU	P P	
2000000			
Peno Especifico del Consento	3.15	3	#167# B 8 B
Ralabergia del compreto fo		4	feminise promedio requeste for- 295 kg/cm2
AGREGADOS	MINERAL RE		Est Agrina
Comment Constitution			
Greended Experifice : Modula de Finaza :		2.51	
% Absurcia		2.08	
S Hanneled		6.79	
P.U. Suello Hernégén		1663.56	
F.U. Comparto Ramagio		1834.54	
CALONES DE BUESO		100000	
Terrato Misorro		1/2"	-
Associations TO USE		2"	
Retuction AC		The same	
Aire Atogrado		A Principal	
Agregado Homegón		TOWNS NO.	Kg
	and a second second		
TOLOMOSCI ANNOUNT OR	DE LOS AGREGADOS		
Cemento		0.14	al.
Apon	21.60%	0.22	ul.
Aire etropodo : 8.01%	1		et.
Agreg Hermigen	63.69%		el.
		1.00	ad.
CANTIBAD DE MATERIALES PO	Rest.		
Pinnish.		432.00	
Committee		140.77	4
Agram Sanagania Massanalas	1	1596.67	
Agregado Horregio	1	11090.07	•
EXPRESSOR DE LAS PROPORCH	ONES EN PERO		
	1.00 BOADGLON 3.70	0.33	
CANTIDAD DE MATERIALES PO	handled to the same	0.33	
		42.50	2
Comento	1 42.50		*
Apie		13.85	
Agregado Humagón Peso Agregado Hormagón :		45.63	*
Harrison Manager Control		40.02	wy3
DOUBKACIÓN EN VOLUMEN			
Comments		1.00	a.
Apm		0.00	4
Agregado Homegin		0.00	a /
BOX SAS DE CEMENTO POR A	m3. 10.16	bolus.	
	10,10		/ ///
1.5			(///0
3			
my			And Lefnithe Villenmen Abal
Eder E. Urribyrren VIII			CAR TREES
TRICHEO JÁBORATO	RISTA		(2)

URB. SAN ANDRES MZ "C" LT "6" PILLCO MARCA - HUANUCO / CEL: MOVISTAR: 920093390

PROYECTO:	TESIS: "EVALUACIÓN DE LA RESISTENCIA A LA COMPRESIÓN DEL ADOQUÍN ELABORADO CON FIBRAS DE ACERO MÁS CAUCHO RECICLADO EN LA CIUDAD DE HUÁNUCO - 2022"
UBICACION:	HUANUCO - HUANUCO
SOLICITA:	BACH, DEUDOR SUAREZ, YASMIN
FECHA:	OCTUBRE DEL 2023

FECHA DE ELABORACION:	04/10/2023	FECHA DE ENSAYO:	11/10/2023	EDAD EN DIAS:	7	
-----------------------	------------	------------------	------------	------------------	---	--

N°	Especimen	Largo(cm)		Ancho (cm)		Altura	Area Bruta	<u>Carga</u> Maxima	<u>Carga</u> Maxima	Resistencia
		L1	L2	At	A2	(cm)	cm2	KN	ka/cm2	f'c= kg/cm2
01	ADOQUÍN HECHO CON UN 15% DE FIBRAS DE ACERO Y DE CAUCHO RECICLADO RESPECTO AL PESO SECO DE LA MEZCLA	20.0	20.0	10.0	10.0	6.0	200.00	621.89	63414.12	317.07
02	ADOQUÍN HECHO CON UN 15% DE FIBRAS DE ACERO Y DE CAUCHO RECICLADO RESPECTO AL PESO SECO DE LA MEZCLA	20.0	20.0	10.0	10.0	6.0	200.00	615.98	62811.48	314.06
03	ADOQUÍN HECHO CON UN 15% DE FIBRAS DE ACERO Y DE CAUCHO RECICLADO RESPECTO AL PESO SECO DE LA MEZCLA	20.0	20.0	10.0	10.0	6.0	200.00	614.24	62634.05	313.17
04	ADOQUÍN HECHO CON UN 15% DE FIBRAS DE ACERO Y DE CAUCHO RECICLADO RESPECTO AL PESO SECO DE LA MEZCLA	20.0	20.0	10.0	10.0	6.0	200.00	622.67	63493.66	317,47
05	ADOQUÍN HECHO CON UN 15% DE FIBRAS DE ACERO Y DE CAUCHO RECICLADO RESPECTO AL PESO SECO DE LA MEZCLA	20.0	20.0	10.0	10,0	6.0	200.00	620.42	63264.23	316.32
06	ADOQUÍN HECHO CON UN 15% DE FIBRAS DE ACERO Y DE CAUCHO RECICLADO RESPECTO AL PESO SECO DE LA MEZCLA	20.0	20.0	10.0	10.0	6.0	200.00	617.54	62970.55	314.85
07	ADOQUÍN HECHO CON UN 15% DE FIBRAS DE ACERO Y DE CAUCHO RECICLADO RESPECTO AL PESO SECO DE LA MEZCLA	20.0	20.0	10.0	10.0	6.0	200.00	615.23	62735.00	313.68
08	ADOQUÍN HECHO CON UN 15% DE FIBRAS DE ACERO Y DE CAUCHO RECICLADO RESPECTO AL PESO SECO DE LA MEZCLA	20.0	20.0	10.0	10.0	6.0	200.00	620.11	63232.62	316.16
09	ADOQUÍN HECHO CON UN 15% DE FIBRAS DE ACERO Y DE CAUCHO RECICLADO RESPECTO AL PESO SECO DE LA MEZCLA	20.0	20.0	10.0	10.0	6.0	200.00	614.23	62633.03	313.17
10	ADOQUÍN HECHO CON UN 15% DE FIBRAS DE ACERO Y DE CAUCHO RECICLADO RESPECTO AL PESO SECO DE LA MEZCLA	20.0	20.0	10.0	10.0	6.0	200.00	624.38	63668.03	318.34

Nota: El ensayo a la compresion se realizó sobre la mitad del bloque, distribuyendo los esfuerzos hacia las caras a través de una placha metálica y estas dimensiones de las unidades se detallan en el cuadro de resultados

fb medio= 315.43 σ= 1.89 CVA 0.60

Donde:

L2: Largo Inferior

L1: Largo Superior A2: Ancho Superior A2: Ancho Inferior

313.54

Eder F. Irribarren Villanueva TECNICO LABORATORISTA

PROYECTO:	TESIS: "EVALUACIÓN DE LA RESISTENCIA A LA COMPRESIÓN DEL ADOQUÍN ELABORADO CON FIBRAS DE ACERO MÁS CAUCHO RECICLADO EN LA CIUDAD DE HUÁNUCO - 2022"
UBICACION:	HUANUCO - HUANUCO
SOLICITA:	BACH, DEUDOR SUAREZ, YASMIN
FECHA:	OCTUBRE DEL 2023

	FECHA DE ELABORACION:		V2023	FECH	A DE EN	SAYO:	18/10/2023	DIAS: 14]
N'	Especimen	Largo(cm)		Anch	Ancho (cm)		Area Bruta	<u>Carga</u> Maxima	<u>Carga</u> <u>Maxima</u>	Resistencia f'c= kg/cm2
		L1	L2	A1	A2	(cm)	cm2	KN	ka/cm2	I C- KUICHI
01	ADOQUÍN HECHO CON UN 15% DE FIBRAS DE ACERO Y DE CAUCHO RECICLADO RESPECTO AL PESO SECO DE LA MEZCLA	20.0	20.0	10.0	10.0	6.0	200.00	703.77	71763.43	358.82
02	ADOQUÍN HECHO CON UN 15% DE FIBRAS DE ACERO Y DE CAUCHO RECICLADO RESPECTO AL PESO SECO DE LA MEZCLA	20.0	20.0	10.0	10.0	6.0	200.00	699.12	71289.27	356.45
03	ADOQUÍN HECHO CON UN 15% DE FIBRAS DE ACERO Y DE CAUCHO RECICLADO RESPECTO AL PESO SECO DE LA MEZCLA	20.0	20.0	10.0	10.0	6.0	200.00	705.36	71925.56	359.63
04	ADOQUÍN HECHO CON UN 15% DE FIBRAS DE ACERO Y DE CAUCHO RECICLADO RESPECTO AL PESO SECO DE LA MEZCLA	20.0	20.0	10.0	10.0	6.0	200.00	706.45	72036.71	360.18
05	ADOQUÍN HECHO CON UN 15% DE FIBRAS DE ACERO Y DE CAUCHO RECICLADO RESPECTO AL PESO SECO DE LA MEZCLA	20.0	20.0	10.0	10.0	6.0	200.00	698.23	71198.51	355.99
06	ADOQUÍN HECHO CON UN 15% DE FIBRAS DE ACERO Y DE CAUCHO RECICLADO RESPECTO AL PESO SECO DE LA MEZCLA	20.0	20.0	10.0	10.0	6.0	200.00	702.47	71630.87	358.15
07	ADOQUÍN HECHO CON UN 15% DE FIBRAS DE ACERO Y DE CAUCHO RECICLADO RESPECTO AL PESO SECO DE LA MEZCLA	20.0	20.0	10.0	10.0	6.0	200.00	692.36	70599.95	353.00
08	ADOQUÍN HECHO CON UN 15% DE FIBRAS DE ACERO Y DE CAUCHO RECICLADO RESPECTO AL PESO SECO DE LA MEZCLA	20.0	20.0	10.0	10.0	6.0	200.00	705.19	71908.22	359.54
09	ADOQUÍN HECHO CON UN 15% DE FIBRAS DE ACERO Y DE CAUCHO RECICLADO RESPECTO AL PESO SECO DE LA MEZCLA	20.0	20.0	10.0	10.0	6.0	200.00	702.41	71624.75	358.12
10	ADOQUÍN HECHO CON UN 15% DE FIBRAS DE ACERO Y DE CAUCHO RECICLADO RESPECTO AL PESO SECO DE LA MEZCLA	20.0	20.0	10.0	10.0	6.0	200.00	706.84	72076.47	360.38

Nota: El ensayo a la compresion se realizó sobre la mitad del bloque, distribuyendo los esfuerzos hacia las caras a través de una placha metálica y estas dimensiones de las unidades se detallan en el cuadro de resultados

fb media= 358.03 g= 2.30

Donde:

L1: Largo Superior L2: Largo Inferior

A2: Ancho Superior A2: Ancho Inferior

C.V= 0.64 fb= 355.73

Eder F. Irribgren Villanueva TECNICO LABORATORISTA

CIP. 78839

URB. SAN ANDRES MZ "C" LT "6" PILLCO MARCA - HUANUCO / CEL: MOVISTAR: 920093390

PROYECTO:	TESIS: "EVALUACIÓN DE LA RESISTENCIA A LA COMPRESIÓN DEL ADOQUÍN ELABORADO CON FIBRAS DE ACERO MÁS CAUCHO RECICLADO EN LA CIUDAD DE HUÁNUCO - 2022"
UBICACION:	HUANUCO - HUANUCO
SOLICITA:	BACH, DEUDOR SUAREZ, YASMIN
FECHA:	OCTUBRE DEL 2023

	FECHA DE ELABORACION:	04/10	0/2023	FECH	A DE EN	SAYO:	01/11/2023	EDAD EN DIAS:	28]
N°	Especimen	Largo(cm)		Ancho (cm)			Area Bruta	Carga Maxima	<u>Carga</u> Maxima	Resistencia
		L1	L2	At	A2	(cm)	cm2	KN	ka/cm2	f'c= kg/cm2
01	ADOQUÍN HECHO CON UN 15% DE FIBRAS DE ACERO Y DE CAUCHO RECICLADO RESPECTO AL PESO SECO DE LA MEZCLA	20.0	20.0	10.0	10.0	6.0	200.00	818.35	83447.15	417.24
02	ADOQUÍN HECHO CON UN 15% DE FIBRAS DE ACERO Y DE CAUCHO RECICLADO RESPECTO AL PESO SECO DE LA MEZCLA	20.0	20.0	10.0	10.0	6.0	200.00	826.96	84325,11	421.63
03	ADOQUÍN HECHO CON UN 15% DE FIBRAS DE ACERO Y DE CAUCHO RECICLADO RESPECTO AL PESO SECO DE LA MEZCLA	20.0	20.0	10.0	10.0	6.0	200.00	821.45	83763.26	418.82
04	ADOQUÍN HECHO CON UN 15% DE FIBRAS DE ACERO Y DE CAUCHO RECICLADO RESPECTO AL PESO SECO DE LA MEZCLA	20.0	20.0	10.0	10.0	6.0	200.00	828.31	84462.77	422.31
05	ADOQUÍN HECHO CON UN 15% DE FIBRAS DE ACERO Y DE CAUCHO RECICLADO RESPECTO AL PESO SECO DE LA MEZCLA	20.0	20.0	10.0	10.0	6.0	200.00	833.46	84987.92	424.94
06	ADOQUÍN HECHO CON UN 15% DE FIBRAS DE ACERO Y DE CAUCHO RECICLADO RESPECTO AL PESO SECO DE LA MEZCLA	20.0	20.0	10.0	10.0	6.0	200.00	831.45	84782.96	423.91
07	ADOQUÍN HECHO CON UN 15% DE FIBRAS DE ACERO Y DE CAUCHO RECICLADO RESPECTO AL PESO SECO DE LA MEZCLA	20.0	20.0	10.0	10.0	6.0	200.00	619.32	83546.06	417.73
_	TO SERVICE STATE OF THE SERVIC	_	_	_						w 100

10

08

09

Nota: El ensayo a la compresion se realizó sobre la mitad del bioque, distribuyendo los esfuerzos hacia las caras a través de una placha metálica y estas dimensiones de las unidades se detallan en el cuadro de resultados

20.0

20.0

20.0

20.0

20.0

20.0

10.0

10.0

10.0

10.0

10.0

10.0

6.0

6.0

6.0

200.00

200.00

200.00

831.33

821.26

833.11

84770.72

83743.88

84952.23

418.38

423.85

418.72

424.76

fb medio= 421.39 σ= 3.01 C.V= 0.72

fb=

ADOQUÍN HECHO CON UN 15% DE FIBRAS DE ACERO Y DE CAUCHO RECICLADO RESPECTO AL PESO

SECO DE LA MEZCLA ADOQUÍN HECHO CON UN 15% DE FIBRAS DE ACERO Y DE CAUCHO RECICLADO RESPECTO AL PESO

SECO DE LA MEZCLA ADOQUÍN HECHO CON UN 15% DE FIBRAS DE ACERO Y DE CAUCHO

RECICLADO RESPECTO AL PESO SECO DE LA MEZCLA

L1: Largo Superior L2: Largo Inferior

A2: Ancho Superior

A2: Ancho Inferior

Eder F. Irribatren Villanueva TECNICO LABORATORISTA

Donde2

p Lefnides Villagena Abal CIP, 78839

PROYECTO:	TESIS: "EVALUACIÓN DE LA RESISTENCIA A LA COMPRESIÓN DEL ADOQUÍN ELABORADO CON FIBRAS DE ACERO MÁS CAUCHO RECICLADO EN LA CIUDAD DE HUÁNUCO - 2022"
UBICACION:	HUANUCO - HUANUCO
SOLICITA:	BACH, DEUDOR SUAREZ, YASMIN
FECHA:	OCTUBRE DEL 2023

FECHA DE ELABORACION:		05/10/2023	FECHA DE ENS	AYO:	12/10/2023	DIAS:	7	
N°	Especimen	Largo(cm)		Altura (cm)	Area Bruta	Carga Maxima	<u>Carna</u> <u>Maxima</u>	1

N°	Especimen	Large	o(cm)	Anch	o (cm)		Area Bruta	Carga Maxima	Carga Maxima kg/cm2	Resistencia
-	-	L1	L2	A1	A2	(cm)	cm2	KN		f'c= kg/cm2
01	ADOQUÍN HECHO CON UN 25% DE FIBRAS DE ACERO Y DE CAUCHO RECICLADO RESPECTO AL PESO SECO DE LA MEZCLA	20.0	20.0	10.0	10.0	6.0	200.00	739.45	75401.72	377.01
02	ADOQUÍN HECHO CÓN UN 25% DE FIBRAS DE ACERO Y DE CAUCHO RECICLADO RESPECTO AL PESO SECO DE LA MEZCLA	20.0	20.0	10.0	10.0	6.0	200,00	734.11	74857.20	374.29
03	ADOQUÍN HECHO CON UN 25% DE FIBRAS DE ACERO Y DE CAUCHO RECICLADO RESPECTO AL PESO SECO DE LA MEZCLA	20.0	20.0	10.0	10,0	6.0	200.00	733.11	74755.23	373.78
04	ADOQUÍN HECHO CON UN 25% DE FIBRAS DE ACERO Y DE CAUCHO RECICLADO RESPECTO AL PESO SECO DE LA MEZCLA	20.0	20.0	10.0	10.0	6.0	200.00	741.95	75656.64	378.28
05	ADOQUÍN HECHO CON UN 25% DE FIBRAS DE ACERO Y DE CAUCHO RECICLADO RESPECTO AL PESO SECO DE LA MEZCLA	20.0	20.0	10.0	10.0	6.0	200.00	735.21	74969.36	374.85
06	ADOQUÍN HECHO CON UN 25% DE FIBRAS DE ACERO Y DE CAUCHO RECICLADO RESPECTO AL PESO SECO DE LA MEZCLA	20.0	20.0	10.0	10.0	6.0	200.00	744.12	75877.92	379.39
07	ADOQUÍN HECHO CON UN 25% DE FIBRAS DE ACERO Y DE CAUCHO RECICLADO RESPECTO AL PESO SECO DE LA MEZCLA	20.0	20.0	10.0	10.0	6.0	200.00	740.32	75490.43	377.45
08	ADOQUÍN HECHO CON UN 25% DE FIBRAS DE ACERO Y DE CAUCHO RECICLADO RESPECTO AL PESO SECO DE LA MEZCLA	20.0	20.0	10.0	10.0	6.0	200.00	744.62	75928.90	379.64
09	ADOQUÍN HECHO CON UN 25% DE FIBRAS DE ACERO Y DE CAUCHO RECICLADO RESPECTO AL PESO SECO DE LA MEZCLA	20.0	20.0	10.0	10.0	6.0	200.00	739.24	75380.30	376.90
10	ADOQUÍN HECHO CON UN 25% DE FIBRAS DE ACERO Y DE CAUCHO RECICLADO RESPECTO AL PESO SECO DE LA MEZCLA	20.0	20.0	10.0	10.0	6.0	200.00	742.12	75673.98	378.37

Nota: El ensayo a la compresion se realizó sobre la mitad del bloque, distribuyendo los esfuerzos hacia las caras a través de una placha metálica y estas dimensiones de las unidades se detallan en el cuadro de resultados

fb medio= 377.00 2.08 0.55

C.V=

Donde:

L1: Largo Superior A2: Ancho Superior L2: Largo Inferior A2: Ancho Inferior

fb= 374.92

Ing. Lefnide: Villamena Abel CIP. 78839

Eder F. Irribotren Villanueva
URB. SAN ANDRES MZ .C. LT . G. C. L. C. MOVISTAR: 920093390

PROYECTO:	TESIS: "EVALUACIÓN DE LA RESISTENCIA A LA COMPRESIÓN DEL ADOQUÍN ELABORADO CON FIBRAS DE ACERO MÁS CAUCHO RECICLADO EN LA CIUDAD DE HUÁNUCO - 2022"
UBICACION:	HUANUCO - HUANUCO
SOLICITA:	BACH, DEUDOR SUAREZ, YASMIN
FECHA:	OCTUBRE DEL 2023

	FECHA DE ELABORACION:		V2023	FECH	A DE EN	SAYO:	19/10/2023	DIAS: 14]
N°	Especimen	Largo(cm)		Ancho (cm)		Altura.	Inches and the second	<u>Carga</u> Maxima	<u>Carga</u> Maxima	Resistencia
		L1 -	L2	A1	A2	(cm)	cm2	KN	kg/cm2	f'c= kg/cm2
01	ADOQUÍN HECHO CON UN 25% DE FIBRAS DE ACERO Y DE CAUCHO RECICLADO RESPECTO AL PESO SECO DE LA MEZCLA	20.0	20.0	10.0	10.0	6.0	200.00	837.43	85392.74	426.96
02	ADOQUÍN HECHO CON UN 25% DE FIBRAS DE ACERO Y DE CAUCHO RECICLADO RESPECTO AL PESO SECO DE LA MEZCLA	20.0	20.0	10.0	10.0	6.0	200.00	833.48	84989.96	424.95
03	ADOQUÍN HECHO CON UN 25% DE FIBRAS DE ACERO Y DE CAUCHO RECICLADO RESPECTO AL PESO SECO DE LA MEZCLA	20.0	20.0	10.0	10.0	6.0	200.00	827.91	84421.98	422.11
04	ADOQUÍN HECHO CON UN 25% DE FIBRAS DE ACERO Y DE CAUCHO RECICLADO RESPECTO AL PESO SECO DE LA MEZCLA	20.0	20.0	10.0	10.0	6.0	200.00	839.46	85599.74	428.00
05	ADOQUÍN HECHO CON UN 25% DE FIBRAS DE ACERO Y DE CAUCHO RECICLADO RESPECTO AL PESO SECO DE LA MEZCLA	20.0	20.0	10.0	10.0	6.0	200.00	831.95	84833.94	424.17
06	ADOQUÍN HECHO CON UN 25% DE FIBRAS DE ACERO Y DE CAUCHO RECICLADO RESPECTO AL PESO SECO DE LA MEZCLA	20.0	20.0	10.0	10.0	6.0	200.00	836.77	85325.44	426.63
07	ADOQUÍN HECHO CON UN 25% DE FIBRAS DE ACERO Y DE CAUCHO RECICLADO RESPECTO AL PESO SECO DE LA MEZCLA	20.0	20.0	10.0	10.0	6.0	200.00	832.86	84926.73	424.63
08	ADOQUÍN HECHO CON UN 25% DE FIBRAS DE ACERO Y DE CAUCHO RECICLADO RESPECTO AL PESO SECO DE LA MEZCLA	20.0	20.0	10.0	10.0	6.0	200.00	837.69	85419.25	427.10
09	ADOQUÍN HECHO CON UN 25% DE FIBRAS DE ACERO Y DE CAUCHO RECICLADO RESPECTO AL PESO SECO DE LA MEZCLA	20.0	20.0	10.0	10.0	6,0	200.00	840.25	85680.29	428.40
10	ADOQUÍN HECHO CON UN 25% DE FIBRAS DE ACERO Y DE CAUCHO RECICLADO RESPECTO AL PESO SECO DE LA MEZCLA	20.0	20.0	10.0	10.0	6.0	200.00	829.27	84560.66	422.80

Nota: El ensayo a la compresion se realizó sobre la mitad del bloque, distribuyendo los esfuerzos hacia las caras a través de una placha metálica y estas dimensiones de las unidades se detallan en el cuadro de resultados

fb medio= 425.58 2.16 σ= C.V= 0.51

Donde:

L1: Largo Superior L2: Largo Inferior

A2: Ancho Superior A2: Ancho Inferior

fb= 423.41

Eder F. Irribarren Villanueva TECNICO JABORATORISTA

PROYECTO:	TESIS: "EVALUACIÓN DE LA RESISTENCIA A LA COMPRESIÓN DEL ADOQUÍN ELABORADO CON FIBRAS DE ACERO MÁS CAUCHO RECICLADO EN LA CIUDAD DE HUÁNUCO - 2022"
UBICACION:	HUANUCO - HUANUCO - HUANUCO
SOLICITA:	BACH, DEUDOR SUAREZ, YASMIN
FECHA:	OCTUBRE DEL 2023

	FECHA DE ELABORACION:		/2023	FECH	A DE EN	SAYO:	02/11/2023	DIAS: 28]
N.	Especimen	Largo(cm)		Ancho (cm)		Altura	Area Bruta	<u>Carga</u> Maxima	<u>Carga</u> Maxima	Resistencia
		L1	L2	A1	A2	(cm)	cm2	KN	kg/cm2	fic= kg/cm2
01	ADOQUÍN HECHO CON UN 25% DE FIBRAS DE ACERO Y DE CAUCHO RECICLADO RESPECTO AL PESO SECO DE LA MEZCLA	20.0	20.0	10.0	10.0	6.0	200.00	983.33	100270.16	501.35
02	ADOQUÍN HECHO CON UN 25% DE FIBRAS DE ACERO Y DE CAUCHO RECICLADO RESPECTO AL PESO SECO DE LA MEZCLA	20.0	20.0	10.0	10.0	6.0	200.00	976.35	99558.41	497,79
03	ADOQUÍN HECHO CON UN 25% DE FIBRAS DE ACERO Y DE CAUCHO RECICLADO RESPECTO AL PESO SECO DE LA MEZCLA	20.0	20.0	10.0	10.0	6.0	200.00	988.39	100786.13	503.93
04	ADOQUÍN HECHO CON UN 25% DE FIBRAS DE ACERO Y DE CAUCHO RECICLADO RESPECTO AL PESO SECO DE LA MEZCLA	20.0	20.0	10.0	10.0	6.0	200.00	991.24	101076.74	505.38
05	ADOQUÍN HECHO CON UN 25% DE FIBRAS DE ACERO Y DE CAUCHO RECICLADO RESPECTO AL PESO SECO DE LA MEZCLA	20.0	20.0	10.0	10.0	6.0	200.00	987.66	100711.69	503.56
06	ADOQUÍN HECHO CON UN 25% DE FIBRAS DE ACERO Y DE CAUCHO RECICLADO RESPECTO AL PESO SECO DE LA MEZCLA	20.0	20.0	10.0	10.0	6.0	200.00	983.99	100337.46	501.69
07	ADOQUÍN HECHO CON UN 25% DE FIBRAS DE ACERO Y DE CAUCHO RECICLADO RESPECTO AL PESO SECO DE LA MEZCLA	20.0	20.0	10.0	10.0	6.0	200.00	978.46	99773.57	498.87
08	ADOQUÍN HECHO CON UN 25% DE FIBRAS DE ACERO Y DE CAUCHO RECICLADO RESPECTO AL PESO SECO DE LA MEZCLA	20.0	20.0	10.0	10.0	6.0	200.00	986.94	100638.27	503.19
09	ADOQUÍN HECHO CON UN 25% DE FIBRAS DE ACERO Y DE CAUCHO RECICLADO RESPECTO AL PESO SECO DE LA MEZCLA	20.0	20.0	10.0	10.0	6.0	200.00	990.47	100998.23	504.99
10	ADOQUÍN HECHO CON UN 25% DE FIBRAS DE ACERO Y DE CAUCHO RECICLADO RESPECTO AL PESO SECO DE LA MEZCLA	20.0	20.0	10.0	10.0	6.0	200.00	988.13	100759.62	503.80

Nota: El ensayo a la compresion se realizó sobre la mitad del bloque, distribuyendo los esfuerzos hacia las caras a través de una placha metálica y estas dimensiones de las unidades se detallan en el cuadro de resultados

fb medio= 502.46 2.52 σ= C.V= 0.50

Donde:

L1: Largo Superior L2: Largo Inferior

A2: Ancho Superior A2: Ancho Inferior

fb= 499.93

ing. Ledeldes Village CIP: 78839

Eder F. Irribarren Villanueva TECNICO JABORATORISTA

PROYECTO:	TESIS: "EVALUACIÓN DE LA RESISTENCIA A LA COMPRESIÓN DEL ADOQUÍN ELABORADO CON FIBRAS DE ACERO MÁS CAUCHO RECICLADO EN LA CIUDAD DE HUÂNUCO - 2022"
UBICACION:	HUANUCO - HUANUCO
SOLICITA:	BACH, DEUDOR SUAREZ, YASMIN
FECHA:	OCTUBRE DEL 2023

FECHA DE ELABORACION:		06/10	W2023	FECHA DE ENSAYO:			13/10/2023	EDAD EN DIAS:	7]
N°	Especimen	Largo(cm)		Ancho (cm)		Altura.	Area Bruta	<u>Carga</u> Maxima	<u>Carga</u> Maxima	Resistencia
-		1.1	L2	A1	A2	(cm)	cm) cm2	KN	kg/cm2	f'c≃ kg/cm2
01	ADOQUÍN HECHO CON UN 35% DE FIBRAS DE ACERO Y DE CAUCHO RECICLADO RESPECTO AL PESO SECO DE LA MEZCLA	20.0	20.0	10.0	10.0	6.0	200.00	821.79	83797.93	418.99
02	ADOQUÍN HECHO CON UN 35% DE FIBRAS DE ACERO Y DE CAUCHO RECICLADO RESPECTO AL PESO SECO DE LA MEZCLA	20.0	20.0	10.0	10.0	6.0	200.00	816.32	83240.15	416.20
03	ADOQUÍN HECHO CON UN 35% DE FIBRAS DE ACERO Y DE CAUCHO RECICLADO RESPECTO AL PESO SECO DE LA MEZCLA	20.0	20.0	10.0	10.0	6.0	200.00	833.11	84952.23	424.76
04	ADOQUÍN HECHO CON UN 35% DE FIBRAS DE ACERO Y DE CAUCHO RECICLADO RESPECTO AL PESO SECO DE LA MEZCLA	20.0	20.0	10.0	10.0	6.0	200.00	818.17	83428.79	417.14
05	ADOQUÍN HECHO CON UN 35% DE FIBRAS DE ACERO Y DE CAUCHO RECICLADO RESPECTO AL PESO SECO DE LA MEZCLA	20.0	20.0	10.0	10.0	6.0	200.00	831.46	84783.98	423.92
06	ADOQUÍN HECHO CON UN 35% DE FIBRAS DE ACERO Y DE CAUCHO RECICLADO RESPECTO AL PESO SECO DE LA MEZCLA	20.0	20.0	10.0	10.0	6.0	200.00	823.53	83975.35	419.88
07	ADOQUÍN HECHO CON UN 35% DE FIBRAS DE ACERO Y DE CAUCHO RECICLADO RESPECTO AL PESO SECO DE LA MEZCLA	20.0	20.0	10.0	10.0	6,0	200.00	832.12	84851.28	424.26
08	ADOQUÍN HECHO CON UN 35% DE FIBRAS DE ACERO Y DE CAUCHO RECICLADO RESPECTO AL PESO SECO DE LA MEZCLA	20.0	20.0	10.0	10.0	6.0	200.00	815.17	83122.88	415.61
09	ADOQUÍN HECHO CON UN 35% DE FIBRAS DE ACERO Y DE CAUCHO RECICLADO RESPECTO AL PESO SECO DE LA MEZCLA	20.0	20.0	10.0	10.0	6.0	200.00	816.19	83226.89	416.13
10	ADOQUÍN HECHO CON UN 35% DE FIBRAS DE ACERO Y DE CAUCHO RECICLADO RESPECTO AL PESO SECO DE LA MEZCLA	20.0	20.0	10.0	10.0	6.0	200.00	820.36	83652.11	418.26

Nota: El ensayo a la compresion se realizó sobre la mitad del bloque, distribuyendo los esfuerzos fb medio= 419.52 hacia las caras a través de una placha metálica y estas dimensiones de las unidades se 3.57 $\sigma =$ detallan en el cuadro de resultados C.V= 0.85 Donde: L1: Largo Superior A2: Ancho Superior fb= 415.95 L2: Largo Inferior A2: Ancho Inferior Eder F. Irribgfren Villanueva log. Leónidos Villameno Abel CIP. 78839 TECHICO LABORATORISTA

PROYECTO:	TESIS: "EVALUACIÓN DE LA RESISTENCIA A LA COMPRESIÓN DEL ADOQUÍN ELABORADO CON FIBRAS DE ACERO MÁS CAUCHO RECICLADO EN LA CIUDAD DE HUÁNUCO - 2022"
UBICACION:	HUANUCO - HUANUCO
SOLICITA:	BACH, DEUDOR SUAREZ, YASMIN
FECHA:	OCTUBRE DEL 2023

FECHA DE ELABORACION:		06/10	W2023	FECHA DE ENSAYO:			20/10/2023	EDAD EN DIAS:	14]
<u>N*</u>	<u>Especimen</u> :	Largo(cm)		Ancho (cm)		Altura	Area Bruta	<u>Carga</u> Maxima	<u>Carga</u> Maxima	Resistencia
		L1	L2	A1	A2	(cm)	cm2	KN	ka/cm2	f'c= kg/cm2
01	ADOQUÍN HECHO CON UN 35% DE FIBRAS DE ACERO Y DE CAUCHO RECICLADO RESPECTO AL PESO SECO DE LA MEZCLA	20.0	20.0	10.0	10.0	6.0	200.00	930.45	94877.99	474.39
02	ADOQUÍN HECHO CON UN 35% DE FIBRAS DE ACERO Y DE CAUCHO RECICLADO RESPECTO AL PESO SECO DE LA MEZCLA	20.0	20.0	10.0	10.0	6.0	200.00	929.63	94794.37	473.97
03	ADOQUÍN HECHO CON UN 35% DE FIBRAS DE ACERO Y DE CAUCHO RECICLADO RESPECTO AL PESO SECO DE LA MEZCLA	20.0	20.0	10.0	10.0	6.0	200.00	933.46	95184.92	475.92
04	ADOQUÍN HECHO CON UN 35% DE FIBRAS DE ACERO Y DE CAUCHO RECICLADO RESPECTO AL PESO SECO DE LA MEZCLA	20.0	20.0	10.0	10.0	6.0	200.00	942.31	96087.35	480.44
05	ADOQUÍN HECHO CON UN 35% DE FIBRAS DE ACERO Y DE CAUCHO RECICLADO RESPECTO AL PESO SECO DE LA MEZCLA	20.0	20.0	10.0	10.0	6.0	200.00	944.66	96326.98	481.63
06	ADOQUÍN HECHO CON UN 35% DE FIBRAS DE ACERO Y DE CAUCHO RECICLADO RESPECTO AL PESO SECO DE LA MEZCLA	20.0	20.0	10.0	10.0	6.0	200.00	932.21	95057.45	475.29
07	ADOQUÍN HECHO CON UN 35% DE FIBRAS DE ACERO Y DE CAUCHO RECICLADO RESPECTO AL PESO SECO DE LA MEZCLA	20.0	20.0	10.0	10.0	6.0	200.00	940.11	95863.02	479.32
08	ADOQUÍN HECHO CON UN 35% DE FIBRAS DE ACERO Y DE CAUCHO RECICLADO RESPECTO AL PESO SECO DE LA MEZCLA	20.0	20.0	10.0	10.0	6.0	200.00	936.74	95519.38	477.60
09	ADOQUÍN HECHO CON UN 35% DE FIBRAS DE ACERO Y DE CAUCHO RECICLADO RESPECTO AL PESO SECO DE LA MEZCLA	20.0	20.0	10.0	10.0	6.0	200.00	938.22	95670.29	478.35
10	ADOQUÍN HECHO CON UN 35% DE FIBRAS DE ACERO Y DE CAUCHO RECICLADO RESPECTO AL PESO SECO DE LA MEZCLA	20.0	20.0	10.0	10.0	6.0	200.00	943.56	96214.81	481.07

Nota: El ensayo a la compresion se realizó sobre la mitad del bloque, distribuyendo los esfuerzos

hacia las caras a través de una placha metálica y estas dimensiones de las unidades se detallan en el cuadro de resultados

Donde:

L1: Largo Superior L2: Largo Inferior

A2: Ancho Superior

A2: Ancho Inferior

fb medio=

σ=

C.V=

fb=

477.80

2.81

0.59

474.99

Eder F. Irribarren Villanueva TECNICO JABORATORISTA

PROYECTO:	TESIS: "EVALUACIÓN DE LA RESISTENCIA A LA COMPRESIÓN DEL ADOQUÍN ELABORADO CON FIBRAS DE ACERO MÁS CAUCHO RECICLADO EN LA CIUDAD DE HUÁNUCO - 2022"
UBICACION:	HUANUCO - HUANUCO
SOLICITA:	BACH, DEUDOR SUAREZ, YASMIN
FECHA:	NOVIEMBRE DEL 2023

FECHA DE ELABORACION:		06/10/2023		FECHA DE ENSAYO:			03/11/2023	DIAS:	28	
N"	<u>Especimen</u>	Largo(cm)		Ancho (cm)		Altura.	The real Property lies and the least lies and the lies and the least lies and the lies and the least lies and the lies and t	<u>Carga</u> Maxima	<u>Carga</u> Maxima	Resistencia
		1.1	L2	A1	A2	(cm)	cm2	KN	kg/cm2	f'c= kg/cm2
01	ADOQUÍN HECHO CON UN 35% DE FIBRAS DE ACERO Y DE CAUCHO RECICLADO RESPECTO AL PESO SECO DE LA MEZCLA	20.0	20.0	10.0	10.0	6.0	200.00	1,094.72	111628.60	558.14
02	ADOQUÍN HECHO CON UN 35% DE FIBRAS DE ACERO Y DE CAUCHO RECICLADO RESPECTO AL PESO SECO DE LA MEZCLA	20.0	20.0	10.0	10.0	6.0	200.00	1,099.56	112122.13	560.61
03	ADOQUÍN HECHO CON UN 35% DE FIBRAS DE ACERO Y DE CAUCHO RECICLADO RESPECTO AL PESO SECO DE LA MEZCLA	20.0	20.0	10.0	10.0	6.0	200.00	1,105.23	112700.30	563.50
04	ADOQUÍN HECHO CON UN 35% DE FIBRAS DE ACERO Y DE CAUCHO RECICLADO RESPECTO AL PESO SECO DE LA MEZCLA	20.0	20.0	10.0	10.0	6.0	200.00	1,098.44	112007.93	560.04
05	ADOQUÍN HECHO CON UN 35% DE FIBRAS DE ACERO Y DE CAUCHO RECICLADO RESPECTO AL PESO SECO DE LA MEZCLA	20.0	20,0	10,0	10.0	6.0	200.00	1,108.44	113027.63	565.14
06	ADOQUÍN HECHO CON UN 35% DE FIBRAS DE ACERO Y DE CAUCHO RECICLADO RESPECTO AL PESO SECO DE LA MEZCLA	20.0	20.0	10.0	10.0	6.0	200.00	1,097.89	111951.84	559.76
07	ADOQUÍN HECHO CON UN 35% DE FIBRAS DE ACERO Y DE CAUCHO RECICLADO RESPECTO AL PESO SECO DE LA MEZCLA	20.0	20.0	10.0	10.0	6.0	200.00	1,107.10	112890.99	564.45
08	ADOQUÍN HECHO CON UN 35% DE FIBRAS DE ACERO Y DE CAUCHO RECICLADO RESPECTO AL PESO SECO DE LA MEZCLA	20.0	20.0	10.0	10.0	6.0	200.00	1,103.77	112561.43	562.76
09	ADOQUÍN HECHO CON UN 35% DE FIBRAS DE ACERO Y DE CAUCHO RECICLADO RESPECTO AL PESO SECO DE LA MEZCLA	20.0	20.0	10.0	10.0	6.0	200.00	1088.51	110995.36	554.98
10	ADOQUÍN HECHO CON UN 35% DE FIBRAS DE ACERO Y DE CAUCHO RECICLADO RESPECTO AL PESO SECO DE LA MEZCLA	20.0	20.0	10.0	10.0	6.0	200.00	1110.03	113189.76	565.95

Nota: El ensayo a la compresion se realizó sobre la mitad del bloque, distribuyendo los esfuerzos hacia las caras a través de una placha metálica y estas dimensiones de las unidades se detallan en el cuadro de resultados

fb medio=

561.53 3.45 0.61 558.08

Donde:

L1: Largo Superior L2: Largo Inferior

A2: Ancho Superior

A2: Ancho Inferior

Eder F. Irribgren Villanueva TECNICO LABORATORISTA

CIP. 78839

ANEXO 4 PANEL FOTOGRÁFICO

Figura 14 *Cuarteo de los agregados*

Nota. La figura muestra el cuarteo de agregados.

Figura 15 *Granulometría de agregados*

Nota. La figura muestra el proceso de tamizado de agregados

Figura 16Proceso de granulometría de agregados

Nota. La figura muestra el proceso de granulometría

Figura 4Pesado de los agregados

Nota. La figura muestra el pesado de agregados

Figura 17 *Proceso de secado de agregados*

Nota. La figura muestra el proceso de secado del agregado

Figura 18 Peso volumétrico de los agregados

Nota. La figura muestra el ensayo de peso volumétrico

Figura 19 *Proceso de secado de agregados*

Nota. La figura muestra el proceso del ensayo

Figura 20Peso volumétrico de los agregados

Nota. La figura muestra el enrazado del ensayo

Figura 21 Proceso del pesado

Nota. La figura muestra del pesaje final

Figura 22 Ensayo de compactado

Nota. La figura muestra el vertido del agregado

Figura 23 Proceso del compactado

Nota. La figura muestra el compactado

Figura 24 Ensayo de compactado

Nota. La figura muestra el proceso final

Figura 25 *Ensayo de densidad de agregados*

Nota. La figura muestra el proceso del ensayo

Figura 26 *Ensayo de densidad de agregados*

Nota. La figura muestra el pesaje de materiales

Figura 27 *Ensayo de densidad de agregados*

Nota. La figura muestra el proceso del ensayo

Figura 28 *Ensayo de densidad de agregados*

Nota. La figura muestra el pesaje de material

Figura 29 Ruptura de probetas a los 28 días

Nota. La figura muestra poniendo la probeta para posterior ruptura.

Figura 30 Ruptura de probetas a los 28 días

Nota. La figura muestra esperando la ruptura de la probeta.

Figura 31Ruptura de probetas a los 28 días

Nota. La figura muestra la probeta ya fisurada al llegar a su máxima resistencia.